Mostrar el registro sencillo del ítem
dc.contributor.author
Lederman, Claudia Beatriz
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2021-06-03T13:33:14Z
dc.date.issued
2019-07
dc.identifier.citation
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; Inhomogeneous minimization problems for the p(x)-Laplacian; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 475; 1; 7-2019; 423-463
dc.identifier.issn
0022-247X
dc.identifier.uri
http://hdl.handle.net/11336/133098
dc.description.abstract
This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of minimizing the functional J(v)=∫ Ω (|∇u(x)|^ p(x)/p(x)+λ(x)χ {v>0} +fv)dx. We show that nonnegative local minimizers u are solutions to the free boundary problem: u≥0 and (P(f,p,λ ^⁎ )){Δ _p(x) u:=div(|∇u(x)|^ p(x)−2 ∇u)=∫ in{u>0} u=0,|∇u|=λ ^⁎ (x)on ∂{u>0} with λ^ ⁎ (x)=(p(x)/p(x)-1+λ(x))^ 1/p(x) and that the free boundary is a C 1,α surface with the exception of a subset of H ^N−1 -measure zero. On the other hand, we study the problem of minimizing the functional J ε (v)=∫Ω(|∇u|^ pε+B ε (v)+f ε v)dx, where B ε (s)=∫_ 0 ^ s β ε (τ)dτ ε>0, β ε (s)=1/3β(s/ε), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1). We prove that if u ε are nonnegative local minimizers, then u ε are solutions to (P ε (f ε ,p ε ))Δ p ε ^(x) u ε =β ε (u ^ε )+f ε ,u ^ε ≥0. Moreover, if the functions u ε , f ε and p ε are uniformly bounded, we show that limit functions u (ε→0) are solutions to the free boundary problem P(f,p,λ ^⁎ ) with λ ^⁎ (x)=(p(x)/p(x)-1M)^1/p(x),M=∫β(s)ds, p=limp ε , f=lim f ε , and that the free boundary is a C^ 1,α surface with the exception of a subset of H^ N−1 -measure zero. In order to obtain our results we need to overcome deep technical difficulties and develop new strategies, not present in the previous literature for this type of problems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MINIMIZATION PROBLEM
dc.subject
FREE BOUNDARY PROBLEM
dc.subject
VARIABLE EXPONENT SPACES
dc.subject
REGULARITY OF THE FREE BOUNDARY
dc.subject
INHOMOGENEOUS PROBLEM
dc.subject
SINGULAR PERTURBATION
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Inhomogeneous minimization problems for the p(x)-Laplacian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T17:31:58Z
dc.identifier.eissn
1096-0813
dc.journal.volume
475
dc.journal.number
1
dc.journal.pagination
423-463
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Journal of Mathematical Analysis and Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X19301738?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2019.02.049
Archivos asociados