Mostrar el registro sencillo del ítem

dc.contributor.author
Lederman, Claudia Beatriz  
dc.contributor.author
Wolanski, Noemi Irene  
dc.date.available
2021-06-03T13:33:14Z  
dc.date.issued
2019-07  
dc.identifier.citation
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; Inhomogeneous minimization problems for the p(x)-Laplacian; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 475; 1; 7-2019; 423-463  
dc.identifier.issn
0022-247X  
dc.identifier.uri
http://hdl.handle.net/11336/133098  
dc.description.abstract
This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of minimizing the functional J(v)=∫ Ω (|∇u(x)|^ p(x)/p(x)+λ(x)χ {v>0} +fv)dx. We show that nonnegative local minimizers u are solutions to the free boundary problem: u≥0 and (P(f,p,λ ^⁎ )){Δ _p(x) u:=div(|∇u(x)|^ p(x)−2 ∇u)=∫ in{u>0} u=0,|∇u|=λ ^⁎ (x)on ∂{u>0} with λ^ ⁎ (x)=(p(x)/p(x)-1+λ(x))^ 1/p(x) and that the free boundary is a C 1,α surface with the exception of a subset of H ^N−1 -measure zero. On the other hand, we study the problem of minimizing the functional J ε (v)=∫Ω(|∇u|^ pε+B ε (v)+f ε v)dx, where B ε (s)=∫_ 0 ^ s β ε (τ)dτ ε>0, β ε (s)=1/3β(s/ε), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1). We prove that if u ε are nonnegative local minimizers, then u ε are solutions to (P ε (f ε ,p ε ))Δ p ε ^(x) u ε =β ε (u ^ε )+f ε ,u ^ε ≥0. Moreover, if the functions u ε , f ε and p ε are uniformly bounded, we show that limit functions u (ε→0) are solutions to the free boundary problem P(f,p,λ ^⁎ ) with λ ^⁎ (x)=(p(x)/p(x)-1M)^1/p(x),M=∫β(s)ds, p=lim⁡p ε , f=lim⁡ f ε , and that the free boundary is a C^ 1,α surface with the exception of a subset of H^ N−1 -measure zero. In order to obtain our results we need to overcome deep technical difficulties and develop new strategies, not present in the previous literature for this type of problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MINIMIZATION PROBLEM  
dc.subject
FREE BOUNDARY PROBLEM  
dc.subject
VARIABLE EXPONENT SPACES  
dc.subject
REGULARITY OF THE FREE BOUNDARY  
dc.subject
INHOMOGENEOUS PROBLEM  
dc.subject
SINGULAR PERTURBATION  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Inhomogeneous minimization problems for the p(x)-Laplacian  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T17:31:58Z  
dc.identifier.eissn
1096-0813  
dc.journal.volume
475  
dc.journal.number
1  
dc.journal.pagination
423-463  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Journal of Mathematical Analysis and Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X19301738?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2019.02.049