Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Inhomogeneous minimization problems for the p(x)-Laplacian

Lederman, Claudia BeatrizIcon ; Wolanski, Noemi IreneIcon
Fecha de publicación: 07/2019
Editorial: Academic Press Inc Elsevier Science
Revista: Journal of Mathematical Analysis and Applications
ISSN: 0022-247X
e-ISSN: 1096-0813
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of minimizing the functional J(v)=∫ Ω (|∇u(x)|^ p(x)/p(x)+λ(x)χ {v>0} +fv)dx. We show that nonnegative local minimizers u are solutions to the free boundary problem: u≥0 and (P(f,p,λ ^⁎ )){Δ _p(x) u:=div(|∇u(x)|^ p(x)−2 ∇u)=∫ in{u>0} u=0,|∇u|=λ ^⁎ (x)on ∂{u>0} with λ^ ⁎ (x)=(p(x)/p(x)-1+λ(x))^ 1/p(x) and that the free boundary is a C 1,α surface with the exception of a subset of H ^N−1 -measure zero. On the other hand, we study the problem of minimizing the functional J ε (v)=∫Ω(|∇u|^ pε+B ε (v)+f ε v)dx, where B ε (s)=∫_ 0 ^ s β ε (τ)dτ ε>0, β ε (s)=1/3β(s/ε), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1). We prove that if u ε are nonnegative local minimizers, then u ε are solutions to (P ε (f ε ,p ε ))Δ p ε ^(x) u ε =β ε (u ^ε )+f ε ,u ^ε ≥0. Moreover, if the functions u ε , f ε and p ε are uniformly bounded, we show that limit functions u (ε→0) are solutions to the free boundary problem P(f,p,λ ^⁎ ) with λ ^⁎ (x)=(p(x)/p(x)-1M)^1/p(x),M=∫β(s)ds, p=lim⁡p ε , f=lim⁡ f ε , and that the free boundary is a C^ 1,α surface with the exception of a subset of H^ N−1 -measure zero. In order to obtain our results we need to overcome deep technical difficulties and develop new strategies, not present in the previous literature for this type of problems.
Palabras clave: MINIMIZATION PROBLEM , FREE BOUNDARY PROBLEM , VARIABLE EXPONENT SPACES , REGULARITY OF THE FREE BOUNDARY , INHOMOGENEOUS PROBLEM , SINGULAR PERTURBATION
Ver el registro completo
 
Archivos asociados
Tamaño: 749.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/133098
URL: https://www.sciencedirect.com/science/article/abs/pii/S0022247X19301738?via%3Dih
DOI: http://dx.doi.org/10.1016/j.jmaa.2019.02.049
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; Inhomogeneous minimization problems for the p(x)-Laplacian; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 475; 1; 7-2019; 423-463
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES