Artículo
Inhomogeneous minimization problems for the p(x)-Laplacian
Fecha de publicación:
07/2019
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
e-ISSN:
1096-0813
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is devoted to the study of inhomogeneous minimization problems associated to the p(x)-Laplacian. We make a thorough analysis of the essential properties of their minimizers and we establish a relationship with a suitable free boundary problem. On the one hand, we study the problem of minimizing the functional J(v)=∫ Ω (|∇u(x)|^ p(x)/p(x)+λ(x)χ {v>0} +fv)dx. We show that nonnegative local minimizers u are solutions to the free boundary problem: u≥0 and (P(f,p,λ ^⁎ )){Δ _p(x) u:=div(|∇u(x)|^ p(x)−2 ∇u)=∫ in{u>0} u=0,|∇u|=λ ^⁎ (x)on ∂{u>0} with λ^ ⁎ (x)=(p(x)/p(x)-1+λ(x))^ 1/p(x) and that the free boundary is a C 1,α surface with the exception of a subset of H ^N−1 -measure zero. On the other hand, we study the problem of minimizing the functional J ε (v)=∫Ω(|∇u|^ pε+B ε (v)+f ε v)dx, where B ε (s)=∫_ 0 ^ s β ε (τ)dτ ε>0, β ε (s)=1/3β(s/ε), with β a Lipschitz function satisfying β>0 in (0,1), β≡0 outside (0,1). We prove that if u ε are nonnegative local minimizers, then u ε are solutions to (P ε (f ε ,p ε ))Δ p ε ^(x) u ε =β ε (u ^ε )+f ε ,u ^ε ≥0. Moreover, if the functions u ε , f ε and p ε are uniformly bounded, we show that limit functions u (ε→0) are solutions to the free boundary problem P(f,p,λ ^⁎ ) with λ ^⁎ (x)=(p(x)/p(x)-1M)^1/p(x),M=∫β(s)ds, p=limp ε , f=lim f ε , and that the free boundary is a C^ 1,α surface with the exception of a subset of H^ N−1 -measure zero. In order to obtain our results we need to overcome deep technical difficulties and develop new strategies, not present in the previous literature for this type of problems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; Inhomogeneous minimization problems for the p(x)-Laplacian; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 475; 1; 7-2019; 423-463
Compartir
Altmétricas