Artículo
La diálisis peritoneal es una alternativa para pacientes con insuficiencia renal crónica, que requiere el análisis periódico del líquido resultante para la detección precoz de complicaciones. Dicho análisis implica la evaluación directa del líquido bajo microscopio y una posterior prueba bioquímica. Como alternativa, el líquido podría analizarse a través de una fotografía (evaluación indirecta) lo que permitiría detectar precozmente una posible complicación, sin que el paciente deba acercarse a un centro de nefrología, mejorando sustancialmente su calidad de vida. En [Comas et al., XX Congreso Argentino de Bioingeniería, pp. 477–486 (2015)] se estudió preliminarmente la detección de muestras patológicas del líquido a partir de fotografías, utilizando descriptores de color y el clasificador k-vecinos más próximos. En el presente trabajo, se presenta un método basado en redes neuronales convolucionales, partiendo de la Alexnet y utilizando transfer learning. La fase de clasificación se implementó con un perceptrón multicapa, clasificando las fotografías entre “normal” y “patológica”, con el resultado de la prueba bioquímica como Gold-standard. Se obtuvo una tasa de error de 5,79%, una FPR de 4,21% y una FNR de 7,37%, con gran estabilidad, reflejada en bajas desviaciones estándar en la estimación de las medidas de error. El método propuesto es más robusto que el enfoque previo, sin requerir ningún tipo de preprocesamiento, ni extracción de características, siendo un buen punto de partida para el desarrollo de una herramienta automática con adecuada capacidad de soporte al diagnóstico. Peritoneal dialysis is an alternative for patients with chronic renal failure requiring periodic analysis of the resulting liquid for the early detection of complications, which involves a direct evaluation of the liquid under a microscope and a biochemical test. Alternatively, the liquid could be analyzed through a photograph (indirect evaluation), enabling the early detection of complications, without requiring the patient going to a nephrology center, improving their life quality. In [Comas et al., XX Congreso Argentino de Bioingeniería, pp. 477–486 (2015)], detection of pathological samples of the liquid from photographs was preliminary studied using color descriptors and k-nearest neighbors as classifier. In the present paper, a method based on convolutional neural networks is presented, starting from Alexnet and using transfer learning. The classification phase was implemented with a multilayer perceptron, classifying the photographs between “normal” and “pathological”, using the biochemical test as Gold-standard. An error rate of 5.79%, a FPR of 4.21% and a FNR of 7.37% were obtained with great stability, reflected in low standard deviations in the estimation of the error measures. The proposed method is more robust than the previous approach, without requiring any preprocessing or feature extraction, being a good starting point for the development of an automatic tool with adequate diagnostic capacity.
Early detection of peritoneal dialysis complications through convolutional neural networks
Comas, Diego Sebastián
; Meschino, Gustavo Javier; Ballarin, Virginia Laura; Jerónimo Aguilera Díaz; Musso, Carlos
; Rivera, Héctor; Plazzotta, Fernando; Algranati, Luis; Luna, Daniel
Fecha de publicación:
05/2020
Editorial:
Sociedad Argentina de Bioingeniería
Revista:
Revista Argentina de Bioingeniería
ISSN:
2591-376X
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICYTE)
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Comas, Diego Sebastián; Meschino, Gustavo Javier; Ballarin, Virginia Laura; Jerónimo Aguilera Díaz; Musso, Carlos; et al.; Early detection of peritoneal dialysis complications through convolutional neural networks; Sociedad Argentina de Bioingeniería; Revista Argentina de Bioingeniería; 24; 2; 5-2020; 58-63
Compartir