Mostrar el registro sencillo del ítem

dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Pacini Naumovich, Elina Rocío  
dc.contributor.other
Catlett, Charlie  
dc.contributor.other
Gentzsch, Wolfgang  
dc.contributor.other
Grandinetti, Lucio  
dc.contributor.other
Joubert, Gerhard  
dc.contributor.other
Vazquez Poletti, José Luis  
dc.date.available
2021-06-01T03:37:19Z  
dc.date.issued
2013  
dc.identifier.citation
Garcia Garino, Carlos Gabriel; Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures; IOS Press; 23; 2013; 103-122  
dc.identifier.isbn
978-1-61499-321-6  
dc.identifier.uri
http://hdl.handle.net/11336/132878  
dc.description.abstract
Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which typically results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Job scheduling is however challenging due to its inherent NP-completeness. Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques, which are good at approximating combinatorial problems, have arisen. We describe a Cloud scheduler based on Ant Colony Optimization (ACO), a popular SI technique, to allocate Virtual Machines to physical resources belonging to a Cloud. Simulated experiments performed with real PSE job data and alternative classical Cloud schedulers show that our scheduler allows a fair assignment of VMs, which are requested by different users, while maximizing the number of jobs executed every time a new user connects to the Cloud. Unlike previous experiments with our algorithm, in which batch execution scenarios for jobs were used, the contribution of this paper is to experiment with our proposal in dynamic scheduling scenarios. Results suggest that our scheduler provides a better balance to the number of executed jobs per unit time versus serviced users, i.e., the number of Cloud users that the scheduler is able to successfully serve.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOS Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
PARAMETER SWEEP EXPERIMENTS  
dc.subject
CLOUD COMPUTING  
dc.subject
MULTITENANCY  
dc.subject
JOB SCHEDULING  
dc.subject
ANT COLONY OPTIMIZATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2021-01-27T20:22:34Z  
dc.journal.volume
23  
dc.journal.pagination
103-122  
dc.journal.pais
Italia  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/978-1-61499-322-3-103  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ebooks.iospress.nl/publication/35318  
dc.conicet.paginas
264  
dc.source.titulo
Cloud Computing and Big Data