Mostrar el registro sencillo del ítem
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Pacini Naumovich, Elina Rocío
dc.contributor.other
Catlett, Charlie
dc.contributor.other
Gentzsch, Wolfgang
dc.contributor.other
Grandinetti, Lucio
dc.contributor.other
Joubert, Gerhard
dc.contributor.other
Vazquez Poletti, José Luis
dc.date.available
2021-06-01T03:37:19Z
dc.date.issued
2013
dc.identifier.citation
Garcia Garino, Carlos Gabriel; Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures; IOS Press; 23; 2013; 103-122
dc.identifier.isbn
978-1-61499-321-6
dc.identifier.uri
http://hdl.handle.net/11336/132878
dc.description.abstract
Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which typically results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Job scheduling is however challenging due to its inherent NP-completeness. Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques, which are good at approximating combinatorial problems, have arisen. We describe a Cloud scheduler based on Ant Colony Optimization (ACO), a popular SI technique, to allocate Virtual Machines to physical resources belonging to a Cloud. Simulated experiments performed with real PSE job data and alternative classical Cloud schedulers show that our scheduler allows a fair assignment of VMs, which are requested by different users, while maximizing the number of jobs executed every time a new user connects to the Cloud. Unlike previous experiments with our algorithm, in which batch execution scenarios for jobs were used, the contribution of this paper is to experiment with our proposal in dynamic scheduling scenarios. Results suggest that our scheduler provides a better balance to the number of executed jobs per unit time versus serviced users, i.e., the number of Cloud users that the scheduler is able to successfully serve.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOS Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PARAMETER SWEEP EXPERIMENTS
dc.subject
CLOUD COMPUTING
dc.subject
MULTITENANCY
dc.subject
JOB SCHEDULING
dc.subject
ANT COLONY OPTIMIZATION
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2021-01-27T20:22:34Z
dc.journal.volume
23
dc.journal.pagination
103-122
dc.journal.pais
Italia
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Pacini Naumovich, Elina Rocío. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Informacion y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/978-1-61499-322-3-103
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ebooks.iospress.nl/publication/35318
dc.conicet.paginas
264
dc.source.titulo
Cloud Computing and Big Data
Archivos asociados