Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures

Título del libro: Cloud Computing and Big Data

Garcia Garino, Carlos GabrielIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Pacini Naumovich, Elina RocíoIcon
Otros responsables: Catlett, Charlie; Gentzsch, Wolfgang; Grandinetti, Lucio; Joubert, Gerhard; Vazquez Poletti, José Luis
Fecha de publicación: 2013
Editorial: IOS Press
ISBN: 978-1-61499-321-6
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Parameter Sweep Experiments (PSEs) allow scientists to perform simulations by running the same code with different input data, which typically results in many CPU-intensive jobs and thus computing environments such as Clouds must be used. Job scheduling is however challenging due to its inherent NP-completeness. Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques, which are good at approximating combinatorial problems, have arisen. We describe a Cloud scheduler based on Ant Colony Optimization (ACO), a popular SI technique, to allocate Virtual Machines to physical resources belonging to a Cloud. Simulated experiments performed with real PSE job data and alternative classical Cloud schedulers show that our scheduler allows a fair assignment of VMs, which are requested by different users, while maximizing the number of jobs executed every time a new user connects to the Cloud. Unlike previous experiments with our algorithm, in which batch execution scenarios for jobs were used, the contribution of this paper is to experiment with our proposal in dynamic scheduling scenarios. Results suggest that our scheduler provides a better balance to the number of executed jobs per unit time versus serviced users, i.e., the number of Cloud users that the scheduler is able to successfully serve.
Palabras clave: PARAMETER SWEEP EXPERIMENTS , CLOUD COMPUTING , MULTITENANCY , JOB SCHEDULING , ANT COLONY OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Tamaño: 466.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/132878
DOI: http://dx.doi.org/10.3233/978-1-61499-322-3-103
URL: https://ebooks.iospress.nl/publication/35318
Colecciones
Capítulos de libros(CCT - MENDOZA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Capítulos de libros(ISISTAN)
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Garcia Garino, Carlos Gabriel; Mateos Diaz, Cristian Maximiliano; Pacini Naumovich, Elina Rocío; ACO-based dynamic job scheduling of parametric computational mechanics studies on Cloud Computing infrastructures; IOS Press; 23; 2013; 103-122
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES