Mostrar el registro sencillo del ítem

dc.contributor.author
Sad, Gonzalo Daniel  
dc.contributor.author
Terissi, Lucas Daniel  
dc.contributor.author
Gómez, Juan Carlos  
dc.contributor.other
Dey, Nilanjan  
dc.date.available
2021-05-19T18:35:45Z  
dc.date.issued
2019  
dc.identifier.citation
Sad, Gonzalo Daniel; Terissi, Lucas Daniel; Gómez, Juan Carlos; Disambiguating Conflicting Classification Results in AVSR; Elsevier; 2019; 55-80  
dc.identifier.isbn
978-0-12-818130-0  
dc.identifier.uri
http://hdl.handle.net/11336/132286  
dc.description.abstract
A novel scheme for disambiguating conflicting classification results in Audio-Visual Speech Recognition (AVSR) applications is proposed in this paper. The classification scheme can be implemented with both generative and discriminative models and can be used with different input modalities, viz. only audio, only visual, and audio visual information. The proposed scheme consists of the cascade connection of a standard classifier, trained with instances of each particular class, followed by a complementary model which is trained with instances of all the remaining classes. The performance of the proposed recognition system is evaluated on three publicly available audio-visual datasets, and using a generative model, namely a Hidden Markov Model, and three discriminative techniques, viz. Random Forests, Support Vector Machines, and Adaptive Boosting. The experimental results are promising in the sense that for the three datasets, the different models, and the different input modalities, improvements in the recognition rates are achieved in comparison to other methods reported in the literature over the same datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SPEECH CLASSIFICATION  
dc.subject
AUDIO-VISUAL SPEECH  
dc.subject
COMPLEMENTARY MODELS  
dc.subject
CLASSIFIER COMBINATION  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Disambiguating Conflicting Classification Results in AVSR  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-11-17T20:16:37Z  
dc.journal.pagination
55-80  
dc.journal.pais
India  
dc.description.fil
Fil: Sad, Gonzalo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Terissi, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.description.fil
Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-12-818130-0.00004-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128181300000040  
dc.conicet.paginas
209  
dc.source.titulo
Intelligent Speech Signal Processing  
dc.conicet.nroedicion
1ra