Mostrar el registro sencillo del ítem
dc.contributor.author
Sad, Gonzalo Daniel
dc.contributor.author
Terissi, Lucas Daniel
dc.contributor.author
Gómez, Juan Carlos
dc.contributor.other
Dey, Nilanjan
dc.date.available
2021-05-19T18:35:45Z
dc.date.issued
2019
dc.identifier.citation
Sad, Gonzalo Daniel; Terissi, Lucas Daniel; Gómez, Juan Carlos; Disambiguating Conflicting Classification Results in AVSR; Elsevier; 2019; 55-80
dc.identifier.isbn
978-0-12-818130-0
dc.identifier.uri
http://hdl.handle.net/11336/132286
dc.description.abstract
A novel scheme for disambiguating conflicting classification results in Audio-Visual Speech Recognition (AVSR) applications is proposed in this paper. The classification scheme can be implemented with both generative and discriminative models and can be used with different input modalities, viz. only audio, only visual, and audio visual information. The proposed scheme consists of the cascade connection of a standard classifier, trained with instances of each particular class, followed by a complementary model which is trained with instances of all the remaining classes. The performance of the proposed recognition system is evaluated on three publicly available audio-visual datasets, and using a generative model, namely a Hidden Markov Model, and three discriminative techniques, viz. Random Forests, Support Vector Machines, and Adaptive Boosting. The experimental results are promising in the sense that for the three datasets, the different models, and the different input modalities, improvements in the recognition rates are achieved in comparison to other methods reported in the literature over the same datasets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SPEECH CLASSIFICATION
dc.subject
AUDIO-VISUAL SPEECH
dc.subject
COMPLEMENTARY MODELS
dc.subject
CLASSIFIER COMBINATION
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Disambiguating Conflicting Classification Results in AVSR
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2020-11-17T20:16:37Z
dc.journal.pagination
55-80
dc.journal.pais
India
dc.description.fil
Fil: Sad, Gonzalo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Terissi, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/B978-0-12-818130-0.00004-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/B9780128181300000040
dc.conicet.paginas
209
dc.source.titulo
Intelligent Speech Signal Processing
dc.conicet.nroedicion
1ra
Archivos asociados