Capítulo de Libro
Disambiguating Conflicting Classification Results in AVSR
Título del libro: Intelligent Speech Signal Processing
Fecha de publicación:
2019
Editorial:
Elsevier
ISBN:
978-0-12-818130-0
Idioma:
Inglés
Clasificación temática:
Resumen
A novel scheme for disambiguating conflicting classification results in Audio-Visual Speech Recognition (AVSR) applications is proposed in this paper. The classification scheme can be implemented with both generative and discriminative models and can be used with different input modalities, viz. only audio, only visual, and audio visual information. The proposed scheme consists of the cascade connection of a standard classifier, trained with instances of each particular class, followed by a complementary model which is trained with instances of all the remaining classes. The performance of the proposed recognition system is evaluated on three publicly available audio-visual datasets, and using a generative model, namely a Hidden Markov Model, and three discriminative techniques, viz. Random Forests, Support Vector Machines, and Adaptive Boosting. The experimental results are promising in the sense that for the three datasets, the different models, and the different input modalities, improvements in the recognition rates are achieved in comparison to other methods reported in the literature over the same datasets.
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(CIFASIS)
Capítulos de libros de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Capítulos de libros de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Sad, Gonzalo Daniel; Terissi, Lucas Daniel; Gómez, Juan Carlos; Disambiguating Conflicting Classification Results in AVSR; Elsevier; 2019; 55-80
Compartir
Altmétricas