Mostrar el registro sencillo del ítem

dc.contributor.author
Janssen, Marijn  
dc.contributor.author
Brous, Paul  
dc.contributor.author
Estevez, Elsa Clara  
dc.contributor.author
Barbosa, Luís Soares  
dc.contributor.author
Janowski, Tomasz  
dc.date.available
2021-05-10T19:35:56Z  
dc.date.issued
2020-07-21  
dc.identifier.citation
Janssen, Marijn; Brous, Paul; Estevez, Elsa Clara; Barbosa, Luís Soares; Janowski, Tomasz; Data governance: Organizing data for trustworthy Artificial Intelligence; Elsevier; Government Information Quarterly; 37; 3; 21-7-2020; 1-8; 101493  
dc.identifier.issn
0740-624X  
dc.identifier.uri
http://hdl.handle.net/11336/131777  
dc.description.abstract
The rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements. However, they all rely on data which is not only big, open and linked but varied, dynamic and streamed at high speeds in real-time. Managing such data is challenging. To overcome such challenges and utilize opportunities for BDAS, organizations are increasingly developing advanced data governance capabilities. This paper reviews challenges and approaches to data governance for such systems, and proposes a framework for data governance for trustworthy BDAS. The framework promotes the stewardship of data, processes and algorithms, the controlled opening of data and algorithms to enable external scrutiny, trusted information sharing within and between organizations, risk-based governance, system-level controls, and data control through shared ownership and self-sovereign identities. The framework is based on 13 design principles and is proposed incrementally, for a single organization and multiple networked organizations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
AI  
dc.subject
ALGORITHMIC GOVERNANCE  
dc.subject
ARTIFICIAL INTELLIGENCE  
dc.subject
BIG DATA  
dc.subject
DATA GOVERNANCE  
dc.subject
INFORMATION SHARING  
dc.subject
TRUSTED FRAMEWORKS  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data governance: Organizing data for trustworthy Artificial Intelligence  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-03-12T19:14:56Z  
dc.journal.volume
37  
dc.journal.number
3  
dc.journal.pagination
1-8; 101493  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Janssen, Marijn. Delft University of Technology; Países Bajos  
dc.description.fil
Fil: Brous, Paul. Delft University of Technology; Países Bajos  
dc.description.fil
Fil: Estevez, Elsa Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Barbosa, Luís Soares. Universidade do Minho; Portugal. United Nations University. Operating Unit on Policy-driven Electronic Governance; Portugal  
dc.description.fil
Fil: Janowski, Tomasz. Donau-Universität Krems; Austria. Gdansk University of Technology; Argentina  
dc.journal.title
Government Information Quarterly  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0740624X20302719  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.giq.2020.101493