Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data governance: Organizing data for trustworthy Artificial Intelligence

Janssen, Marijn; Brous, Paul; Estevez, Elsa ClaraIcon ; Barbosa, Luís Soares; Janowski, Tomasz
Fecha de publicación: 21/07/2020
Editorial: Elsevier
Revista: Government Information Quarterly
ISSN: 0740-624X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements. However, they all rely on data which is not only big, open and linked but varied, dynamic and streamed at high speeds in real-time. Managing such data is challenging. To overcome such challenges and utilize opportunities for BDAS, organizations are increasingly developing advanced data governance capabilities. This paper reviews challenges and approaches to data governance for such systems, and proposes a framework for data governance for trustworthy BDAS. The framework promotes the stewardship of data, processes and algorithms, the controlled opening of data and algorithms to enable external scrutiny, trusted information sharing within and between organizations, risk-based governance, system-level controls, and data control through shared ownership and self-sovereign identities. The framework is based on 13 design principles and is proposed incrementally, for a single organization and multiple networked organizations.
Palabras clave: AI , ALGORITHMIC GOVERNANCE , ARTIFICIAL INTELLIGENCE , BIG DATA , DATA GOVERNANCE , INFORMATION SHARING , TRUSTED FRAMEWORKS
Ver el registro completo
 
Archivos asociados
Tamaño: 798.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/131777
URL: https://www.sciencedirect.com/science/article/abs/pii/S0740624X20302719
DOI: http://dx.doi.org/10.1016/j.giq.2020.101493
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Janssen, Marijn; Brous, Paul; Estevez, Elsa Clara; Barbosa, Luís Soares; Janowski, Tomasz; Data governance: Organizing data for trustworthy Artificial Intelligence; Elsevier; Government Information Quarterly; 37; 3; 21-7-2020; 1-8; 101493
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES