Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Classification of cowpea beans using multielemental fingerprinting combined with supervised learning

Pérez Rodríguez, MichaelIcon ; Gaiad, José EmilioIcon ; Hidalgo, Melisa JazminIcon ; Avanza, María VictoriaIcon ; Pellerano, Roberto GerardoIcon
Fecha de publicación: 01/2019
Editorial: Elsevier
Revista: Food Control
ISSN: 0956-7135
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Multielemental compositions (Ag, As, Ba, Be, Cd, Cs, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, Rb, V, and Zn) of 106 cowpea bean samples belonging to different varieties collected from the province of Corrientes in Argentina were determined using inductively coupled plasma mass spectrometry (ICP-MS). Based on the multielemental data, five supervised learning techniques, namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k nearest neighbors (k-NN), random forest (RF), and support vector machine (SVM) with radial basis function Kernel, were computed aiming at building classification models that allow one to predict the botanical variety of the samples based on their element profiles. The best classification performance was obtained by SVM with 93% accuracy rate. The model developed through this method enabled the correct separation of the samples into the five cowpea varieties investigated, where 100% sensitivity was achieved for most of the predicted classes. Thus, SVM was the algorithm selected for the classification of the cowpea beans according to their botanical variety. Multielemental determination coupled with supervised pattern recognition techniques have proved to be an interesting approach for differentiating a diverse range of cowpea genotypes. This study has contributed toward generalizing the use of multielemental fingerprinting as a promising tool for testing the authenticity of cowpea beans on a global scale.
Palabras clave: AUTHENTICITY , COWPEA BEAN , GENOTYPE , ICP-MS , MULTIELEMENTAL FINGERPRINTING , SUPERVISED LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.666Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/130760
URL: https://linkinghub.elsevier.com/retrieve/pii/S0956713518303955
DOI: http://dx.doi.org/10.1016/j.foodcont.2018.08.001
Colecciones
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Pérez Rodríguez, Michael; Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Avanza, María Victoria; Pellerano, Roberto Gerardo; Classification of cowpea beans using multielemental fingerprinting combined with supervised learning; Elsevier; Food Control; 95; 1-2019; 232-241
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES