Mostrar el registro sencillo del ítem

dc.contributor.author
Riquelme, Gabriel  
dc.contributor.author
Zabalegui, Nicolás  
dc.contributor.author
Marchi, Pablo Gabriel  
dc.contributor.author
Jones, Christina M.  
dc.contributor.author
Monge, Maria Eugenia  
dc.date.available
2021-04-13T18:08:27Z  
dc.date.issued
2020-10  
dc.identifier.citation
Riquelme, Gabriel; Zabalegui, Nicolás; Marchi, Pablo Gabriel; Jones, Christina M.; Monge, Maria Eugenia; A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows; Molecular Diversity Preservation International; Metabolites; 10; 10; 10-2020; 1-14  
dc.identifier.issn
2218-1989  
dc.identifier.uri
http://hdl.handle.net/11336/129950  
dc.description.abstract
Preprocessing data in a reproducible and robust way is one of the current challenges in untargeted metabolomics workflows. Data curation in liquid chromatography–mass spectrometry (LC–MS) involves the removal of biologically non-relevant features (retention time, m/z pairs) to retain only high-quality data for subsequent analysis and interpretation. The present work introduces TidyMS, a package for the Python programming language for preprocessing LC–MS data for quality control (QC) procedures in untargeted metabolomics workflows. It is a versatile strategy that can be customized or fit for purpose according to the specific metabolomics application. It allows performing quality control procedures to ensure accuracy and reliability in LC–MS measurements, and it allows preprocessing metabolomics data to obtain cleaned matrices for subsequent statistical analysis. The capabilities of the package are shown with pipelines for an LC–MS system suitability check, system conditioning, signal drift evaluation, and data curation. These applications were implemented to preprocess data corresponding to a new suite of candidate plasma reference materials developed by the National Institute of Standards and Technology (NIST; hypertriglyceridemic, diabetic, and African-American plasma pools) to be used in untargeted metabolomics studies in addition to NIST SRM 1950 Metabolites in Frozen Human Plasma. The package offers a rapid and reproducible workflow that can be used in an automated or semi-automated fashion, and it is an open and free tool available to all users.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DATA CLEANING  
dc.subject
DATA CURATION  
dc.subject
PREPROCESSING  
dc.subject
PYTHON  
dc.subject
QUALITY CONTROL  
dc.subject
REFERENCE MATERIALS  
dc.subject
SIGNAL DRIFT  
dc.subject
SYSTEM SUITABILITY  
dc.subject
UNTARGETED METABOLOMICS  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-04T19:55:09Z  
dc.journal.volume
10  
dc.journal.number
10  
dc.journal.pagination
1-14  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Riquelme, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina  
dc.description.fil
Fil: Zabalegui, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina  
dc.description.fil
Fil: Marchi, Pablo Gabriel. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Jones, Christina M.. National Institute Of Standards And Technology; Estados Unidos  
dc.description.fil
Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.journal.title
Metabolites  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/metabo10100416  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2218-1989/10/10/416