Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows

Riquelme, GabrielIcon ; Zabalegui, NicolásIcon ; Marchi, Pablo GabrielIcon ; Jones, Christina M.; Monge, Maria EugeniaIcon
Fecha de publicación: 10/2020
Editorial: Molecular Diversity Preservation International
Revista: Metabolites
ISSN: 2218-1989
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Preprocessing data in a reproducible and robust way is one of the current challenges in untargeted metabolomics workflows. Data curation in liquid chromatography–mass spectrometry (LC–MS) involves the removal of biologically non-relevant features (retention time, m/z pairs) to retain only high-quality data for subsequent analysis and interpretation. The present work introduces TidyMS, a package for the Python programming language for preprocessing LC–MS data for quality control (QC) procedures in untargeted metabolomics workflows. It is a versatile strategy that can be customized or fit for purpose according to the specific metabolomics application. It allows performing quality control procedures to ensure accuracy and reliability in LC–MS measurements, and it allows preprocessing metabolomics data to obtain cleaned matrices for subsequent statistical analysis. The capabilities of the package are shown with pipelines for an LC–MS system suitability check, system conditioning, signal drift evaluation, and data curation. These applications were implemented to preprocess data corresponding to a new suite of candidate plasma reference materials developed by the National Institute of Standards and Technology (NIST; hypertriglyceridemic, diabetic, and African-American plasma pools) to be used in untargeted metabolomics studies in addition to NIST SRM 1950 Metabolites in Frozen Human Plasma. The package offers a rapid and reproducible workflow that can be used in an automated or semi-automated fashion, and it is an open and free tool available to all users.
Palabras clave: DATA CLEANING , DATA CURATION , PREPROCESSING , PYTHON , QUALITY CONTROL , REFERENCE MATERIALS , SIGNAL DRIFT , SYSTEM SUITABILITY , UNTARGETED METABOLOMICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.046Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/129950
DOI: http://dx.doi.org/10.3390/metabo10100416
URL: https://www.mdpi.com/2218-1989/10/10/416
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Riquelme, Gabriel; Zabalegui, Nicolás; Marchi, Pablo Gabriel; Jones, Christina M.; Monge, Maria Eugenia; A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows; Molecular Diversity Preservation International; Metabolites; 10; 10; 10-2020; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES