Artículo
A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows
Riquelme, Gabriel
; Zabalegui, Nicolás
; Marchi, Pablo Gabriel
; Jones, Christina M.; Monge, Maria Eugenia
Fecha de publicación:
10/2020
Editorial:
Molecular Diversity Preservation International
Revista:
Metabolites
ISSN:
2218-1989
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Preprocessing data in a reproducible and robust way is one of the current challenges in untargeted metabolomics workflows. Data curation in liquid chromatography–mass spectrometry (LC–MS) involves the removal of biologically non-relevant features (retention time, m/z pairs) to retain only high-quality data for subsequent analysis and interpretation. The present work introduces TidyMS, a package for the Python programming language for preprocessing LC–MS data for quality control (QC) procedures in untargeted metabolomics workflows. It is a versatile strategy that can be customized or fit for purpose according to the specific metabolomics application. It allows performing quality control procedures to ensure accuracy and reliability in LC–MS measurements, and it allows preprocessing metabolomics data to obtain cleaned matrices for subsequent statistical analysis. The capabilities of the package are shown with pipelines for an LC–MS system suitability check, system conditioning, signal drift evaluation, and data curation. These applications were implemented to preprocess data corresponding to a new suite of candidate plasma reference materials developed by the National Institute of Standards and Technology (NIST; hypertriglyceridemic, diabetic, and African-American plasma pools) to be used in untargeted metabolomics studies in addition to NIST SRM 1950 Metabolites in Frozen Human Plasma. The package offers a rapid and reproducible workflow that can be used in an automated or semi-automated fashion, and it is an open and free tool available to all users.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Riquelme, Gabriel; Zabalegui, Nicolás; Marchi, Pablo Gabriel; Jones, Christina M.; Monge, Maria Eugenia; A python-based pipeline for preprocessing lc–ms data for untargeted metabolomics workflows; Molecular Diversity Preservation International; Metabolites; 10; 10; 10-2020; 1-14
Compartir
Altmétricas