Mostrar el registro sencillo del ítem
dc.contributor.author
Ombrosi, Sheldy Javier

dc.contributor.author
Rivera Ríos, Israel Pablo

dc.contributor.author
Safe, Martin Dario

dc.date.available
2021-03-31T21:05:45Z
dc.date.issued
2020-08-27
dc.identifier.citation
Ombrosi, Sheldy Javier; Rivera Ríos, Israel Pablo; Safe, Martin Dario; Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree; Oxford University Press; International Mathematics Research Notices; 2021; 4; 27-8-2020; 2736-2762
dc.identifier.issn
1073-7928
dc.identifier.uri
http://hdl.handle.net/11336/129310
dc.description.abstract
In this paper, weighted endpoint estimates for the Hardy–Littlewood maximal function on the infinite rooted k-ary tree are provided. Motivated by Naor and Tao [ 23], the following Fefferman–Stein estimate w({x∈T:Mf(x)>λ})≤cs1λ∫T|f(x)|M(ws)(x)1sdxs>1 is settled, and moreover, it is shown that it is sharp, in the sense that it does not hold in general if s=1. Some examples of nontrivial weights such that the weighted weak type (1,1) estimate holds are provided. A strong Fefferman–Stein-type estimate and as a consequence some vector-valued extensions are obtained. In the appendix, a weighted counterpart of the abstract theorem of Soria and Tradacete [ 38] on infinite trees is established.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
WEIGHTS
dc.subject
MAXIMAL
dc.subject
FEFFERMAN-STEIN
dc.subject
TREES
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-09-25T16:48:14Z
dc.journal.volume
2021
dc.journal.number
4
dc.journal.pagination
2736-2762
dc.journal.pais
Reino Unido

dc.journal.ciudad
Oxford
dc.description.fil
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Rivera Ríos, Israel Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
International Mathematics Research Notices

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/advance-article/doi/10.1093/imrn/rnaa220/5897128
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imrn/rnaa220
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2003.10034
Archivos asociados