Artículo
Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree
Fecha de publicación:
27/08/2020
Editorial:
Oxford University Press
Revista:
International Mathematics Research Notices
ISSN:
1073-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, weighted endpoint estimates for the Hardy–Littlewood maximal function on the infinite rooted k-ary tree are provided. Motivated by Naor and Tao [ 23], the following Fefferman–Stein estimate w({x∈T:Mf(x)>λ})≤cs1λ∫T|f(x)|M(ws)(x)1sdxs>1 is settled, and moreover, it is shown that it is sharp, in the sense that it does not hold in general if s=1. Some examples of nontrivial weights such that the weighted weak type (1,1) estimate holds are provided. A strong Fefferman–Stein-type estimate and as a consequence some vector-valued extensions are obtained. In the appendix, a weighted counterpart of the abstract theorem of Soria and Tradacete [ 38] on infinite trees is established.
Palabras clave:
WEIGHTS
,
MAXIMAL
,
FEFFERMAN-STEIN
,
TREES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Ombrosi, Sheldy Javier; Rivera Ríos, Israel Pablo; Safe, Martin Dario; Fefferman–Stein Inequalities for the Hardy–Littlewood Maximal Function on the Infinite Rooted k-ary Tree; Oxford University Press; International Mathematics Research Notices; 2021; 4; 27-8-2020; 2736-2762
Compartir
Altmétricas