Mostrar el registro sencillo del ítem

dc.contributor.author
Perez Bello, Dinibel  
dc.contributor.author
Natali, Maria Paula  
dc.contributor.author
Meza, Amalia Margarita  
dc.date.available
2021-03-26T10:47:30Z  
dc.date.issued
2019-12  
dc.identifier.citation
Perez Bello, Dinibel; Natali, Maria Paula; Meza, Amalia Margarita; Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting; Springer; Neural Computing And Applications; 31; 12; 12-2019; 8411-8422  
dc.identifier.issn
0941-0643  
dc.identifier.uri
http://hdl.handle.net/11336/129012  
dc.description.abstract
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FORECASTING  
dc.subject
NEURAL NETWORK  
dc.subject
SPACE WEATHER  
dc.subject
VTEC  
dc.subject.classification
Investigación Climatológica  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-03-25T14:09:07Z  
dc.journal.volume
31  
dc.journal.number
12  
dc.journal.pagination
8411-8422  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Perez Bello, Dinibel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia; Argentina  
dc.description.fil
Fil: Natali, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia; Argentina  
dc.description.fil
Fil: Meza, Amalia Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de la Plata. Facultad de Cs.astronomicas y Geofisicas. Laboratorio Maggia; Argentina  
dc.journal.title
Neural Computing And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00521-019-04528-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-019-04528-8