Artículo
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
Fecha de publicación:
12/2019
Editorial:
Springer
Revista:
Neural Computing And Applications
ISSN:
0941-0643
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.
Palabras clave:
FORECASTING
,
NEURAL NETWORK
,
SPACE WEATHER
,
VTEC
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Perez Bello, Dinibel; Natali, Maria Paula; Meza, Amalia Margarita; Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting; Springer; Neural Computing And Applications; 31; 12; 12-2019; 8411-8422
Compartir
Altmétricas