Mostrar el registro sencillo del ítem

dc.contributor.author
Royo Esnal, Aritz  
dc.contributor.author
Torra, Joel  
dc.contributor.author
Chantre Balacca, Guillermo Ruben  
dc.contributor.other
Chantre Balacca, Guillermo Ruben  
dc.contributor.other
González Andújar, José Luis  
dc.date.available
2021-03-05T11:03:28Z  
dc.date.issued
2020  
dc.identifier.citation
Royo Esnal, Aritz; Torra, Joel; Chantre Balacca, Guillermo Ruben; Weed Emergence Models; Springer Nature Switzerland AG; 2020; 85-116  
dc.identifier.isbn
978-3-030-44401-3  
dc.identifier.uri
http://hdl.handle.net/11336/127594  
dc.description.abstract
Weed emergence models are practical tools that aim to describe the dynamics of emergence in the field. Such models can be conceptualized from two main perspectives: a reductionist/mechanistic approach and an empirical modelling viewpoint. While the former provides a close description of the basic ecophysiological processes underlying weed emergence (i.e. seed dormancy, germination and pre-emergence growth), they usually require a large amount of difficult to estimate species-specific parameters, as well as sometimes unavailable or missing experimental data for model development/calibration/validation. Conversely, the latter aims to describe the emergence process as a whole by seeking a general mathematical description of field emergence data as a function of field environmental variables, mainly temperature and precipitation. As reviewed in the literature, most emergence models have been developed using nonlinear regression (NLR) techniques. NLR sigmoidal type models which are based on cumulative thermal or hydrothermal time have become the most popular approach as they are easy to develop and use. However, some statistical and bioecological limitations arise, for example, the lack of independence between samplings, censored data, need for threshold thermal/hydric parameter estimation and determination of ‘moment zero’ for thermal/hydrothermal-time accumulation, among other factors, which can lead to inaccurate descriptions of the emergence process. New approaches based on soft computing techniques (SCT) have recently been proposed as alternative models to tackle some of the previously mentioned limitations. In this chapter, we focus on empirical weed emergence models with special emphasis in NLR models, highlighting some of the main advantages, as well as the statistical and biological limitations that could affect their predictive accuracy. We briefly discuss new SCT-based approaches, such as artificial neural networks which have recently been used for weed emergence modelling.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Nature Switzerland AG  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EMPIRICAL MODELLING  
dc.subject
FIELD EMERGENCE DATA  
dc.subject
NON-LINEAR REGRESSION  
dc.subject
HYDRO-THERMAL TIME  
dc.subject
SOFT COMPUTING  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject
UNCERTAINTY  
dc.subject.classification
Agronomía, reproducción y protección de plantas  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Weed Emergence Models  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2020-12-04T15:07:01Z  
dc.journal.pagination
85-116  
dc.journal.pais
Suiza  
dc.journal.ciudad
Cham  
dc.description.fil
Fil: Royo Esnal, Aritz. Universidad de Lleida; España  
dc.description.fil
Fil: Torra, Joel. Universidad de Lleida; España  
dc.description.fil
Fil: Chantre Balacca, Guillermo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur. Departamento de Agronomía; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-44402-0_5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-030-44402-0_5  
dc.conicet.paginas
342  
dc.source.titulo
Decision Support Systems for Weed Management  
dc.conicet.nroedicion
1a.