Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Weed Emergence Models

Título del libro: Decision Support Systems for Weed Management

Royo Esnal, Aritz; Torra, Joel; Chantre Balacca, Guillermo RubenIcon
Otros responsables: Chantre Balacca, Guillermo RubenIcon ; González Andújar, José Luis
Fecha de publicación: 2020
Editorial: Springer Nature Switzerland AG
ISBN: 978-3-030-44401-3
Idioma: Inglés
Clasificación temática:
Agronomía, reproducción y protección de plantas

Resumen

Weed emergence models are practical tools that aim to describe the dynamics of emergence in the field. Such models can be conceptualized from two main perspectives: a reductionist/mechanistic approach and an empirical modelling viewpoint. While the former provides a close description of the basic ecophysiological processes underlying weed emergence (i.e. seed dormancy, germination and pre-emergence growth), they usually require a large amount of difficult to estimate species-specific parameters, as well as sometimes unavailable or missing experimental data for model development/calibration/validation. Conversely, the latter aims to describe the emergence process as a whole by seeking a general mathematical description of field emergence data as a function of field environmental variables, mainly temperature and precipitation. As reviewed in the literature, most emergence models have been developed using nonlinear regression (NLR) techniques. NLR sigmoidal type models which are based on cumulative thermal or hydrothermal time have become the most popular approach as they are easy to develop and use. However, some statistical and bioecological limitations arise, for example, the lack of independence between samplings, censored data, need for threshold thermal/hydric parameter estimation and determination of ‘moment zero’ for thermal/hydrothermal-time accumulation, among other factors, which can lead to inaccurate descriptions of the emergence process. New approaches based on soft computing techniques (SCT) have recently been proposed as alternative models to tackle some of the previously mentioned limitations. In this chapter, we focus on empirical weed emergence models with special emphasis in NLR models, highlighting some of the main advantages, as well as the statistical and biological limitations that could affect their predictive accuracy. We briefly discuss new SCT-based approaches, such as artificial neural networks which have recently been used for weed emergence modelling.
Palabras clave: EMPIRICAL MODELLING , FIELD EMERGENCE DATA , NON-LINEAR REGRESSION , HYDRO-THERMAL TIME , SOFT COMPUTING , ARTIFICIAL NEURAL NETWORKS , UNCERTAINTY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.630Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/127594
URL: https://link.springer.com/chapter/10.1007/978-3-030-44402-0_5
DOI: http://dx.doi.org/10.1007/978-3-030-44402-0_5
Colecciones
Capítulos de libros(CERZOS)
Capítulos de libros de CENTRO REC.NAT.RENOVABLES DE ZONA SEMIARIDA(I)
Citación
Royo Esnal, Aritz; Torra, Joel; Chantre Balacca, Guillermo Ruben; Weed Emergence Models; Springer Nature Switzerland AG; 2020; 85-116
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Capítulo de Libro Modelling Weed Seedbank Dormancy and Germination
    Título del libro: Decision Support Systems for Weed Management
    Batlla, Diego ; Malavert Pineda, Cristian Jonatan ; Fernández, Rocío Belén ; Benech-Arnold, Roberto Luis (Springer, 2020)
  • Capítulo de Libro A Simulation Model as the Core for Integrated Weed Management Decision Support Systems: The Case of Avena fatua-Winter Wheat in the Semiarid Pampean Region of Argentina
    Título del libro: Decision Support Systems for Weed Management
    Molinari, Franco Ariel ; Blanco, Anibal Manuel ; Vigna, Mario Raul; Chantre Balacca, Guillermo Ruben - Otros responsables: Chantre Balacca, Guillermo Ruben González Andújar, José Luis - (Springer Nature Switzerland AG, 2020)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES