Mostrar el registro sencillo del ítem

dc.contributor.author
Vitale, Santiago  
dc.contributor.author
Orlando, José Ignacio  
dc.contributor.author
Iarussi, Emmanuel  
dc.contributor.author
Larrabide, Ignacio  
dc.date.available
2021-03-01T15:49:43Z  
dc.date.issued
2019-08  
dc.identifier.citation
Vitale, Santiago; Orlando, José Ignacio; Iarussi, Emmanuel; Larrabide, Ignacio; Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs; Springer; International Journal of Computer Assisted Radiology and Surgery; 15; 2; 8-2019; 183-192  
dc.identifier.issn
1861-6410  
dc.identifier.uri
http://hdl.handle.net/11336/127002  
dc.description.abstract
Purpose: In this paper, we propose to apply generative adversarial neural networks trained with a cycle consistency loss, or CycleGANs, to improve realism in ultrasound (US) simulation from computed tomography (CT) scans. Methods: A ray-casting US simulation approach is used to generate intermediate synthetic images from abdominal CT scans. Then, an unpaired set of these synthetic and real US images is used to train CycleGANs with two alternative architectures for the generator, a U-Net and a ResNet. These networks are finally used to translate ray-casting based simulations into more realistic synthetic US images. Results: Our approach was evaluated both qualitatively and quantitatively. A user study performed by 21 experts in US imaging shows that both networks significantly improve realism with respect to the original ray-casting algorithm (p≪ 0.0001), with the ResNet model performing better than the U-Net (p≪ 0.0001). Conclusion: Applying CycleGANs allows to obtain better synthetic US images of the abdomen. These results can contribute to reduce the gap between artificially generated and real US scans, which might positively impact in applications such as semi-supervised training of machine learning algorithms and low-cost training of medical doctors and radiologists in US image interpretation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
IMAGE SIMULATION  
dc.subject
ULTRASOUND  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2021-02-18T15:47:39Z  
dc.identifier.eissn
1861-6429  
dc.journal.volume
15  
dc.journal.number
2  
dc.journal.pagination
183-192  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Vitale, Santiago. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Orlando, José Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Iarussi, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.journal.title
International Journal of Computer Assisted Radiology and Surgery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11548-019-02046-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11548-019-02046-5