Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs

Vitale, SantiagoIcon ; Orlando, José IgnacioIcon ; Iarussi, EmmanuelIcon ; Larrabide, IgnacioIcon
Fecha de publicación: 08/2019
Editorial: Springer
Revista: International Journal of Computer Assisted Radiology and Surgery
ISSN: 1861-6410
e-ISSN: 1861-6429
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Purpose: In this paper, we propose to apply generative adversarial neural networks trained with a cycle consistency loss, or CycleGANs, to improve realism in ultrasound (US) simulation from computed tomography (CT) scans. Methods: A ray-casting US simulation approach is used to generate intermediate synthetic images from abdominal CT scans. Then, an unpaired set of these synthetic and real US images is used to train CycleGANs with two alternative architectures for the generator, a U-Net and a ResNet. These networks are finally used to translate ray-casting based simulations into more realistic synthetic US images. Results: Our approach was evaluated both qualitatively and quantitatively. A user study performed by 21 experts in US imaging shows that both networks significantly improve realism with respect to the original ray-casting algorithm (p≪ 0.0001), with the ResNet model performing better than the U-Net (p≪ 0.0001). Conclusion: Applying CycleGANs allows to obtain better synthetic US images of the abdomen. These results can contribute to reduce the gap between artificially generated and real US scans, which might positively impact in applications such as semi-supervised training of machine learning algorithms and low-cost training of medical doctors and radiologists in US image interpretation.
Palabras clave: DEEP LEARNING , IMAGE SIMULATION , ULTRASOUND
Ver el registro completo
 
Archivos asociados
Tamaño: 1.498Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/127002
URL: http://link.springer.com/10.1007/s11548-019-02046-5
DOI: http://dx.doi.org/10.1007/s11548-019-02046-5
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Vitale, Santiago; Orlando, José Ignacio; Iarussi, Emmanuel; Larrabide, Ignacio; Improving realism in patient-specific abdominal ultrasound simulation using CycleGANs; Springer; International Journal of Computer Assisted Radiology and Surgery; 15; 2; 8-2019; 183-192
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES