Mostrar el registro sencillo del ítem

dc.contributor.author
Guerrero Gimenez, Martin Eduardo  
dc.contributor.author
Fernandez Muñoz, Juan Manuel  
dc.contributor.author
Lang, B. J.  
dc.contributor.author
Holton, K. M.  
dc.contributor.author
Ciocca, Daniel Ramon  
dc.contributor.author
Catania, Carlos Adrian  
dc.contributor.author
Zoppino, Felipe Carlos Martin  
dc.date.available
2021-02-26T18:40:48Z  
dc.date.issued
2020-10  
dc.identifier.citation
Guerrero Gimenez, Martin Eduardo; Fernandez Muñoz, Juan Manuel; Lang, B. J.; Holton, K. M.; Ciocca, Daniel Ramon; et al.; Galgo: A bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types; Oxford University Press; Bioinformatics (Oxford, England); 36; 20; 10-2020; 5037-5044  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/126845  
dc.description.abstract
Motivation: Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results: To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cancer  
dc.subject
Gene signature  
dc.subject
Genetic algorithm  
dc.subject
Prognosis  
dc.subject
Transcriptomic  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Galgo: A bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-08-04T19:36:37Z  
dc.journal.volume
36  
dc.journal.number
20  
dc.journal.pagination
5037-5044  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Guerrero Gimenez, Martin Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Fernandez Muñoz, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Lang, B. J.. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Holton, K. M.. Harvard University; Estados Unidos  
dc.description.fil
Fil: Ciocca, Daniel Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.description.fil
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Zoppino, Felipe Carlos Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article-abstract/36/20/5037/5868557  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1093/bioinformatics/btaa619