Artículo
Galgo: A bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types
Guerrero Gimenez, Martin Eduardo
; Fernandez Muñoz, Juan Manuel
; Lang, B. J.; Holton, K. M.; Ciocca, Daniel Ramon
; Catania, Carlos Adrian
; Zoppino, Felipe Carlos Martin
Fecha de publicación:
10/2020
Editorial:
Oxford University Press
Revista:
Bioinformatics (Oxford, England)
ISSN:
1367-4803
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Motivation: Statistical and machine-learning analyses of tumor transcriptomic profiles offer a powerful resource to gain deeper understanding of tumor subtypes and disease prognosis. Currently, prognostic gene-expression signatures do not exist for all cancer types, and most developed to date have been optimized for individual tumor types. In Galgo, we implement a bi-objective optimization approach that prioritizes gene signature cohesiveness and patient survival in parallel, which provides greater power to identify tumor transcriptomic phenotypes strongly associated with patient survival. Results: To compare the predictive power of the signatures obtained by Galgo with previously studied subtyping methods, we used a meta-analytic approach testing a total of 35 large population-based transcriptomic biobanks of four different cancer types. Galgo-generated colorectal and lung adenocarcinoma signatures were stronger predictors of patient survival compared to published molecular classification schemes. One Galgo-generated breast cancer signature outperformed PAM50, AIMS, SCMGENE and IntClust subtyping predictors. In high-grade serous ovarian cancer, Galgo signatures obtained similar predictive power to a consensus classification method. In all cases, Galgo subtypes reflected enrichment of gene sets related to the hallmarks of the disease, which highlights the biological relevance of the partitions found.
Palabras clave:
Cancer
,
Gene signature
,
Genetic algorithm
,
Prognosis
,
Transcriptomic
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMBECU)
Articulos de INST. DE MEDICINA Y BIO. EXP. DE CUYO
Articulos de INST. DE MEDICINA Y BIO. EXP. DE CUYO
Citación
Guerrero Gimenez, Martin Eduardo; Fernandez Muñoz, Juan Manuel; Lang, B. J.; Holton, K. M.; Ciocca, Daniel Ramon; et al.; Galgo: A bi-objective evolutionary meta-heuristic identifies robust transcriptomic classifiers associated with patient outcome across multiple cancer types; Oxford University Press; Bioinformatics (Oxford, England); 36; 20; 10-2020; 5037-5044
Compartir
Altmétricas