Mostrar el registro sencillo del ítem
dc.contributor.author
Garí Núñez, Yisel
dc.contributor.author
Monge Bosdari, David Antonio
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Garcia Garino, Carlos Gabriel
dc.date.available
2021-02-19T17:11:53Z
dc.date.issued
2019-02
dc.identifier.citation
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Learning budget assignment policies for autoscaling scientific workflows in the cloud; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 23; 1; 2-2019; 87-105
dc.identifier.issn
1386-7857
dc.identifier.uri
http://hdl.handle.net/11336/126104
dc.description.abstract
Autoscalers exploit cloud-computing elasticity to cope with the dynamic computational demands of scientific workflows. Autoscalers constantly acquire or terminate virtual machines (VMs) on-the-fly to execute workflows minimizing makespan and economic cost. One key problem of workflow autoscaling under budget constraints (i.e. with a maximum limit in cost) is determining the right proportion between: (a) expensive but reliable VMs called on-demand instances, and (b) cheaper but subject-to-failure VMs called spot instances. Spot instances can potentially provide huge parallelism possibilities at low costs but they must be used wisely as they can fail unexpectedly hindering makespan. Given the unpredictability of failures and the inherent performance variability of clouds, designing a policy for assigning the budget for each kind of instance is not a trivial task. For such reason we formalize the described problem as a Markov decision process that allows us learning near-optimal policies from the experience of other baseline policies. Experiments over four well-known scientific workflows, demonstrate that learned policies outperform the baseline policies considering the aggregated relative percentage difference of makespan and execution cost. These promising results encourage the future study of new strategies aiming to find optimal budget policies applied to the execution of workflows in the cloud.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTOSCALING
dc.subject
CLOUD COMPUTING
dc.subject
MARKOV DECISION PROCESS
dc.subject
SCIENTIFIC WORKFLOWS
dc.subject
SPOT INSTANCES
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning budget assignment policies for autoscaling scientific workflows in the cloud
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T16:39:40Z
dc.journal.volume
23
dc.journal.number
1
dc.journal.pagination
87-105
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Garí Núñez, Yisel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Monge Bosdari, David Antonio. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.journal.title
Cluster Computing-the Journal Of Networks Software Tools And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10586-018-02902-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s10586-018-02902-0
Archivos asociados