Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning budget assignment policies for autoscaling scientific workflows in the cloud

Garí Núñez, YiselIcon ; Monge Bosdari, David AntonioIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 02/2019
Editorial: Springer
Revista: Cluster Computing-the Journal Of Networks Software Tools And Applications
ISSN: 1386-7857
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Autoscalers exploit cloud-computing elasticity to cope with the dynamic computational demands of scientific workflows. Autoscalers constantly acquire or terminate virtual machines (VMs) on-the-fly to execute workflows minimizing makespan and economic cost. One key problem of workflow autoscaling under budget constraints (i.e. with a maximum limit in cost) is determining the right proportion between: (a) expensive but reliable VMs called on-demand instances, and (b) cheaper but subject-to-failure VMs called spot instances. Spot instances can potentially provide huge parallelism possibilities at low costs but they must be used wisely as they can fail unexpectedly hindering makespan. Given the unpredictability of failures and the inherent performance variability of clouds, designing a policy for assigning the budget for each kind of instance is not a trivial task. For such reason we formalize the described problem as a Markov decision process that allows us learning near-optimal policies from the experience of other baseline policies. Experiments over four well-known scientific workflows, demonstrate that learned policies outperform the baseline policies considering the aggregated relative percentage difference of makespan and execution cost. These promising results encourage the future study of new strategies aiming to find optimal budget policies applied to the execution of workflows in the cloud.
Palabras clave: AUTOSCALING , CLOUD COMPUTING , MARKOV DECISION PROCESS , SCIENTIFIC WORKFLOWS , SPOT INSTANCES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.621Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/126104
URL: http://link.springer.com/10.1007/s10586-018-02902-0
DOI: https://doi.org/10.1007/s10586-018-02902-0
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Garí Núñez, Yisel; Monge Bosdari, David Antonio; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Learning budget assignment policies for autoscaling scientific workflows in the cloud; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 23; 1; 2-2019; 87-105
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES