Artículo
There are no rigid filiform Lie algebras of low dimension
Fecha de publicación:
01/2019
Editorial:
Heldermann Verlag
Revista:
Journal Of Lie Theory
ISSN:
0949-5932
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), there is a non-isomorphic filiform Lie bracket. This follows by constructing non-trivial linear deformations in a Zariski open dense set of the variety of filiform Lie algebras of dimension 9, 10 and 11 (in lower dimensions this is well known.)
Palabras clave:
FILIFORMS LIE ALGEBRAS
,
DEFORMATIONS
,
VERGNE'S CONJETURE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Vera, Sonia Vanesa; Tirao, Paulo Andres; There are no rigid filiform Lie algebras of low dimension; Heldermann Verlag; Journal Of Lie Theory; 29; 2; 1-2019; 391-412
Compartir