Mostrar el registro sencillo del ítem
dc.contributor.author
Deré, Jonas
dc.contributor.author
Lauret, Jorge Ruben
dc.date.available
2021-02-08T13:09:51Z
dc.date.issued
2019-07
dc.identifier.citation
Deré, Jonas; Lauret, Jorge Ruben; On Ricci negative solvmanifolds and their nilradicals; Wiley VCH Verlag; Mathematische Nachrichten; 292; 7; 7-2019; 1462-1481
dc.identifier.issn
0025-584X
dc.identifier.uri
http://hdl.handle.net/11336/125070
dc.description.abstract
In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Wiley VCH Verlag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NEGATIVE
dc.subject
RICCI
dc.subject
SOLVMANIFOLD
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On Ricci negative solvmanifolds and their nilradicals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-19T21:17:24Z
dc.identifier.eissn
1522-2616
dc.journal.volume
292
dc.journal.number
7
dc.journal.pagination
1462-1481
dc.journal.pais
Alemania
dc.journal.ciudad
Weinheim
dc.description.fil
Fil: Deré, Jonas. Katholikie Universiteit Leuven; Bélgica
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Mathematische Nachrichten
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1709.10342
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.201700455
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/mana.201700455
Archivos asociados