Artículo
On Ricci negative solvmanifolds and their nilradicals
Fecha de publicación:
07/2019
Editorial:
Wiley VCH Verlag
Revista:
Mathematische Nachrichten
ISSN:
0025-584X
e-ISSN:
1522-2616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In the homogeneous case, the only curvature behavior which is still far from being understood is Ricci negative. In this paper, we study which nilpotent Lie algebras admit a Ricci negative solvable extension. Different unexpected behaviors were found. On the other hand, given a nilpotent Lie algebra, we consider the space of all the derivations such that the corresponding solvable extension has a metric with negative Ricci curvature. Using the nice convexity properties of the moment map for the variety of nilpotent Lie algebras, we obtain a useful characterization of such derivations and some applications.
Palabras clave:
NEGATIVE
,
RICCI
,
SOLVMANIFOLD
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Deré, Jonas; Lauret, Jorge Ruben; On Ricci negative solvmanifolds and their nilradicals; Wiley VCH Verlag; Mathematische Nachrichten; 292; 7; 7-2019; 1462-1481
Compartir
Altmétricas