Artículo
Continuous Probabilistic SLAM Solved via Iterated Conditional Modes
Gimenez Romero, Javier Alejandro
; Amicarelli, Adriana Natacha
; Toibero, Juan Marcos
; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar
Fecha de publicación:
12/2019
Editorial:
Springer
Revista:
International Journal of Automation and Computing
ISSN:
1476-8186
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This article proposes a simultaneous localization and mapping (SLAM) version with continuous probabilistic mapping (CP-SLAM), i.e., an algorithm of simultaneous localization and mapping that avoids the use of grids, and thus, does not require a discretized environment. A Markov random field (MRF) is considered to model this SLAM version with high spatial resolution maps. The mapping methodology is based on a point cloud generated by successive observations of the environment, which is kept bounded and representative by including a novel recursive subsampling method. The CP-SLAM problem is solved via iterated conditional modes (ICM), which is a classic algorithm with theoretical convergence over any MRF. The probabilistic maps are the most appropriate to represent dynamic environments, and can be easily implemented in other versions of the SLAM problem, such as the multi-robot version. Simulations and real experiments show the flexibility and excellent performance of this proposal.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gimenez Romero, Javier Alejandro; Amicarelli, Adriana Natacha; Toibero, Juan Marcos; Di Sciascio, Fernando Agustín; Carelli Albarracin, Ricardo Oscar; Continuous Probabilistic SLAM Solved via Iterated Conditional Modes; Springer; International Journal of Automation and Computing; 16; 6; 12-2019; 838-850
Compartir
Altmétricas