Mostrar el registro sencillo del ítem

dc.contributor.author
De Masi, Anna  
dc.contributor.author
Ferrari, Pablo Augusto  
dc.contributor.author
Presutti, Errico  
dc.contributor.author
Soprano Loto, Nahuel  
dc.date.available
2021-01-25T15:36:13Z  
dc.date.issued
2019-06  
dc.identifier.citation
De Masi, Anna; Ferrari, Pablo Augusto; Presutti, Errico; Soprano Loto, Nahuel; Non local branching Brownians with annihilation and free boundary problems; Univ Washington; Electronic Journal Of Probability; 24; 6-2019; 1-30  
dc.identifier.issn
1083-6489  
dc.identifier.uri
http://hdl.handle.net/11336/123588  
dc.description.abstract
We study a system of branching Brownian motions on R with annihilation: At each branching time a new particle is created and the leftmost one is deleted. The case of strictly local creations (the new particle is put exactly at the same position of the branching particle) was studied in [10]. In [11] instead the position y of the new particle has a distribution p(x, y)dy, x the position of the branching particle, however particles in between branching times do not move. In this paper we consider Brownian motions as in [10] and non local branching as in [11] and prove convergence in the continuum limit (when the number N of particles diverges) to a limit density which satisfies a free boundary problem when this has classical solutions. We use in the convergence a stronger topology than in [10] and [11] and have explicit bounds on the rate of convergence.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Univ Washington  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRANCHING BROWNIAN MOTION  
dc.subject
BRUNET-DERRIDA MODELS  
dc.subject
FREE BOUNDARY PROBLEMS  
dc.subject
HYDRODYNAMIC LIMIT  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Non local branching Brownians with annihilation and free boundary problems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T17:30:29Z  
dc.journal.volume
24  
dc.journal.pagination
1-30  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: De Masi, Anna. Universita degli Studi dell'Aquila; Italia  
dc.description.fil
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Presutti, Errico. Gran Sasso Science Institute; Italia  
dc.description.fil
Fil: Soprano Loto, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.journal.title
Electronic Journal Of Probability  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1214/19-EJP324