Mostrar el registro sencillo del ítem
dc.contributor.author
De Masi, Anna
dc.contributor.author
Ferrari, Pablo Augusto
dc.contributor.author
Presutti, Errico
dc.contributor.author
Soprano Loto, Nahuel
dc.date.available
2021-01-25T15:36:13Z
dc.date.issued
2019-06
dc.identifier.citation
De Masi, Anna; Ferrari, Pablo Augusto; Presutti, Errico; Soprano Loto, Nahuel; Non local branching Brownians with annihilation and free boundary problems; Univ Washington; Electronic Journal Of Probability; 24; 6-2019; 1-30
dc.identifier.issn
1083-6489
dc.identifier.uri
http://hdl.handle.net/11336/123588
dc.description.abstract
We study a system of branching Brownian motions on R with annihilation: At each branching time a new particle is created and the leftmost one is deleted. The case of strictly local creations (the new particle is put exactly at the same position of the branching particle) was studied in [10]. In [11] instead the position y of the new particle has a distribution p(x, y)dy, x the position of the branching particle, however particles in between branching times do not move. In this paper we consider Brownian motions as in [10] and non local branching as in [11] and prove convergence in the continuum limit (when the number N of particles diverges) to a limit density which satisfies a free boundary problem when this has classical solutions. We use in the convergence a stronger topology than in [10] and [11] and have explicit bounds on the rate of convergence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Univ Washington
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRANCHING BROWNIAN MOTION
dc.subject
BRUNET-DERRIDA MODELS
dc.subject
FREE BOUNDARY PROBLEMS
dc.subject
HYDRODYNAMIC LIMIT
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Non local branching Brownians with annihilation and free boundary problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T17:30:29Z
dc.journal.volume
24
dc.journal.pagination
1-30
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: De Masi, Anna. Universita degli Studi dell'Aquila; Italia
dc.description.fil
Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Presutti, Errico. Gran Sasso Science Institute; Italia
dc.description.fil
Fil: Soprano Loto, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Electronic Journal Of Probability
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1214/19-EJP324
Archivos asociados