Artículo
Non local branching Brownians with annihilation and free boundary problems
Fecha de publicación:
06/2019
Editorial:
Univ Washington
Revista:
Electronic Journal Of Probability
ISSN:
1083-6489
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study a system of branching Brownian motions on R with annihilation: At each branching time a new particle is created and the leftmost one is deleted. The case of strictly local creations (the new particle is put exactly at the same position of the branching particle) was studied in [10]. In [11] instead the position y of the new particle has a distribution p(x, y)dy, x the position of the branching particle, however particles in between branching times do not move. In this paper we consider Brownian motions as in [10] and non local branching as in [11] and prove convergence in the continuum limit (when the number N of particles diverges) to a limit density which satisfies a free boundary problem when this has classical solutions. We use in the convergence a stronger topology than in [10] and [11] and have explicit bounds on the rate of convergence.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
De Masi, Anna; Ferrari, Pablo Augusto; Presutti, Errico; Soprano Loto, Nahuel; Non local branching Brownians with annihilation and free boundary problems; Univ Washington; Electronic Journal Of Probability; 24; 6-2019; 1-30
Compartir
Altmétricas