Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrer, Luciana

dc.contributor.author
Nandwana, Mahesh Kumar
dc.contributor.author
McLaren, Mitchell
dc.contributor.author
Castan, Diego
dc.contributor.author
Lawson, Aaron
dc.date.available
2021-01-21T15:57:38Z
dc.date.issued
2019-01
dc.identifier.citation
Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron; Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 27; 1; 1-2019; 140-153
dc.identifier.issn
2329-9290
dc.identifier.uri
http://hdl.handle.net/11336/123318
dc.description.abstract
The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FORENSIC VOICE COMPARISON
dc.subject
SPEAKER RECOGNITION
dc.subject
TRIAL-BASED CALIBRATION
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-07-08T18:56:44Z
dc.journal.volume
27
dc.journal.number
1
dc.journal.pagination
140-153
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Nandwana, Mahesh Kumar. No especifíca;
dc.description.fil
Fil: McLaren, Mitchell. No especifíca;
dc.description.fil
Fil: Castan, Diego. No especifíca;
dc.description.fil
Fil: Lawson, Aaron. No especifíca;
dc.journal.title
IEEE/ACM Transactions on Audio Speech and Language Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8490592
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2018.2875794
Archivos asociados