Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option

Ferrer, LucianaIcon ; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron
Fecha de publicación: 01/2019
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE/ACM Transactions on Audio Speech and Language Processing
ISSN: 2329-9290
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable.
Palabras clave: FORENSIC VOICE COMPARISON , SPEAKER RECOGNITION , TRIAL-BASED CALIBRATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.261Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/123318
URL: https://ieeexplore.ieee.org/document/8490592
DOI: http://dx.doi.org/10.1109/TASLP.2018.2875794
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Ferrer, Luciana; Nandwana, Mahesh Kumar; McLaren, Mitchell; Castan, Diego; Lawson, Aaron; Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 27; 1; 1-2019; 140-153
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES