Mostrar el registro sencillo del ítem

dc.contributor.author
Klausen, Michael Schantz  
dc.contributor.author
Jespersen, Martin Closter  
dc.contributor.author
Nielsen, Henrik  
dc.contributor.author
Jensen, Kamilla Kjærgaard  
dc.contributor.author
Jurtz, Vanessa Isabell  
dc.contributor.author
Sønderby, Casper Kaae  
dc.contributor.author
Sommer, Morten Otto Alexander  
dc.contributor.author
Winther, Ole  
dc.contributor.author
Nielsen, Morten  
dc.contributor.author
Petersen, Bent  
dc.contributor.author
Marcatili, Paolo  
dc.date.available
2021-01-19T20:55:49Z  
dc.date.issued
2019-06-20  
dc.identifier.citation
Klausen, Michael Schantz; Jespersen, Martin Closter; Nielsen, Henrik; Jensen, Kamilla Kjærgaard; Jurtz, Vanessa Isabell; et al.; NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning; Veterinary and Human Toxicology; Proteins: Structure, Function And Genetics; 87; 6; 20-6-2019; 520-527  
dc.identifier.issn
0887-3585  
dc.identifier.uri
http://hdl.handle.net/11336/123085  
dc.description.abstract
The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Veterinary and Human Toxicology  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
DISORDER  
dc.subject
LOCAL STRUCTURE PREDICTION  
dc.subject
SECONDARY STRUCTURE  
dc.subject
SOLVENT ACCESSIBILITY  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-20T18:10:14Z  
dc.journal.volume
87  
dc.journal.number
6  
dc.journal.pagination
520-527  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Klausen, Michael Schantz. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Jespersen, Martin Closter. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Nielsen, Henrik. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Jensen, Kamilla Kjærgaard. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Jurtz, Vanessa Isabell. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Sønderby, Casper Kaae. Universidad de Copenhagen; Dinamarca  
dc.description.fil
Fil: Sommer, Morten Otto Alexander. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Winther, Ole. Universidad de Copenhagen; Dinamarca. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Petersen, Bent. Technical University of Denmark; Dinamarca. Asian Institute of Medicine, Science and Technology; Malasia  
dc.description.fil
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca  
dc.journal.title
Proteins: Structure, Function And Genetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/prot.25674