Mostrar el registro sencillo del ítem
dc.contributor.author
Klausen, Michael Schantz
dc.contributor.author
Jespersen, Martin Closter
dc.contributor.author
Nielsen, Henrik
dc.contributor.author
Jensen, Kamilla Kjærgaard
dc.contributor.author
Jurtz, Vanessa Isabell
dc.contributor.author
Sønderby, Casper Kaae
dc.contributor.author
Sommer, Morten Otto Alexander
dc.contributor.author
Winther, Ole
dc.contributor.author
Nielsen, Morten
dc.contributor.author
Petersen, Bent
dc.contributor.author
Marcatili, Paolo
dc.date.available
2021-01-19T20:55:49Z
dc.date.issued
2019-06-20
dc.identifier.citation
Klausen, Michael Schantz; Jespersen, Martin Closter; Nielsen, Henrik; Jensen, Kamilla Kjærgaard; Jurtz, Vanessa Isabell; et al.; NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning; Veterinary and Human Toxicology; Proteins: Structure, Function And Genetics; 87; 6; 20-6-2019; 520-527
dc.identifier.issn
0887-3585
dc.identifier.uri
http://hdl.handle.net/11336/123085
dc.description.abstract
The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Veterinary and Human Toxicology
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
DISORDER
dc.subject
LOCAL STRUCTURE PREDICTION
dc.subject
SECONDARY STRUCTURE
dc.subject
SOLVENT ACCESSIBILITY
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-20T18:10:14Z
dc.journal.volume
87
dc.journal.number
6
dc.journal.pagination
520-527
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Klausen, Michael Schantz. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Jespersen, Martin Closter. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Nielsen, Henrik. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Jensen, Kamilla Kjærgaard. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Jurtz, Vanessa Isabell. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Sønderby, Casper Kaae. Universidad de Copenhagen; Dinamarca
dc.description.fil
Fil: Sommer, Morten Otto Alexander. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Winther, Ole. Universidad de Copenhagen; Dinamarca. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Petersen, Bent. Technical University of Denmark; Dinamarca. Asian Institute of Medicine, Science and Technology; Malasia
dc.description.fil
Fil: Marcatili, Paolo. Technical University of Denmark; Dinamarca
dc.journal.title
Proteins: Structure, Function And Genetics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/prot.25674
Archivos asociados