Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning

Klausen, Michael Schantz; Jespersen, Martin Closter; Nielsen, Henrik; Jensen, Kamilla Kjærgaard; Jurtz, Vanessa Isabell; Sønderby, Casper Kaae; Sommer, Morten Otto Alexander; Winther, Ole; Nielsen, MortenIcon ; Petersen, Bent; Marcatili, Paolo
Fecha de publicación: 20/06/2019
Editorial: Veterinary and Human Toxicology
Revista: Proteins: Structure, Function And Genetics
ISSN: 0887-3585
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

The ability to predict local structural features of a protein from the primary sequence is of paramount importance for unraveling its function in absence of experimental structural information. Two main factors affect the utility of potential prediction tools: their accuracy must enable extraction of reliable structural information on the proteins of interest, and their runtime must be low to keep pace with sequencing data being generated at a constantly increasing speed. Here, we present NetSurfP-2.0, a novel tool that can predict the most important local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is sequence-based and uses an architecture composed of convolutional and long short-term memory neural networks trained on solved protein structures. Using a single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary structure, structural disorder, and backbone dihedral angles for each residue of the input sequences. We assessed the accuracy of NetSurfP-2.0 on several independent test datasets and found it to consistently produce state-of-the-art predictions for each of its output features. We observe a correlation of 80% between predictions and experimental data for solvent accessibility, and a precision of 85% on secondary structure 3-class predictions. In addition to improved accuracy, the processing time has been optimized to allow predicting more than 1000 proteins in less than 2 hours, and complete proteomes in less than 1 day.
Palabras clave: DEEP LEARNING , DISORDER , LOCAL STRUCTURE PREDICTION , SECONDARY STRUCTURE , SOLVENT ACCESSIBILITY
Ver el registro completo
 
Archivos asociados
Tamaño: 855.1Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/123085
DOI: http://dx.doi.org/10.1002/prot.25674
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Klausen, Michael Schantz; Jespersen, Martin Closter; Nielsen, Henrik; Jensen, Kamilla Kjærgaard; Jurtz, Vanessa Isabell; et al.; NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning; Veterinary and Human Toxicology; Proteins: Structure, Function And Genetics; 87; 6; 20-6-2019; 520-527
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES