Mostrar el registro sencillo del ítem
dc.contributor.author
Villavicencio, Christian Paulo
dc.contributor.author
Schiaffino, Silvia Noemi
dc.contributor.author
Diaz Pace, Jorge Andres
dc.contributor.author
Monteserin, Ariel José
dc.date.available
2021-01-18T16:15:21Z
dc.date.issued
2019-01
dc.identifier.citation
Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José; Group recommender systems: A multi-agent solution; Elsevier Science; Knowledge-Based Systems; 164; 1-2019; 436-458
dc.identifier.issn
0950-7051
dc.identifier.uri
http://hdl.handle.net/11336/122865
dc.description.abstract
Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
GROUP RECOMMENDATIONS
dc.subject
MULTI-AGENT SYSTEMS
dc.subject
NEGOTIATION
dc.subject
RECOMMENDER SYSTEMS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Group recommender systems: A multi-agent solution
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T21:40:14Z
dc.journal.volume
164
dc.journal.pagination
436-458
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Villavicencio, Christian Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Knowledge-Based Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0950705118305574
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.knosys.2018.11.013
Archivos asociados