Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Group recommender systems: A multi-agent solution

Villavicencio, Christian PauloIcon ; Schiaffino, Silvia NoemiIcon ; Diaz Pace, Jorge AndresIcon ; Monteserin, Ariel JoséIcon
Fecha de publicación: 01/2019
Editorial: Elsevier Science
Revista: Knowledge-Based Systems
ISSN: 0950-7051
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Providing recommendations to groups of users has become a promising research area, since many items tend to be consumed by groups of people. Various techniques have been developed aiming at making recommendations to a group as a whole. Most works use aggregation techniques to combine preferences, recommendations or profiles. However, satisfying all group members in an even way still remains as a challenge. To deal with this problem, we propose an extension of a multi-agent approach based on negotiation techniques for group recommendation. In the approach, we use the multilateral Monotonic Concession Protocol (MCP) to combine individual recommendations into a group recommendation. In this work, we extend the MCP protocol to allow users to personalize the behavior of the agents. This extension was evaluated in two different domains (movies and points of interest) with satisfactory results. We compared our approach against different baselines, namely: a preference aggregation algorithm, a recommendation aggregation algorithm, and a simple one-step negotiation. The results show evidence that, when using our negotiation approach, users in the groups are more uniformly satisfied than with traditional aggregation approaches.
Palabras clave: GROUP RECOMMENDATIONS , MULTI-AGENT SYSTEMS , NEGOTIATION , RECOMMENDER SYSTEMS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 9.143Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/122865
URL: https://linkinghub.elsevier.com/retrieve/pii/S0950705118305574
DOI: https://doi.org/10.1016/j.knosys.2018.11.013
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Villavicencio, Christian Paulo; Schiaffino, Silvia Noemi; Diaz Pace, Jorge Andres; Monteserin, Ariel José; Group recommender systems: A multi-agent solution; Elsevier Science; Knowledge-Based Systems; 164; 1-2019; 436-458
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES