Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques

Rodríguez Alvarez, Juan MaximilianoIcon ; Arroqui, MauricioIcon ; Mangudo, Pablo; Toloza, Juan ManuelIcon ; Jatip, Daniel Esteban; Rodriguez, Juan ManuelIcon ; Teyseyre, Alfredo RaulIcon ; Sanz, Carlos; Zunino Suarez, Alejandro OctavioIcon ; Machado, Claudio; Mateos Diaz, Cristian MaximilianoIcon
Fecha de publicación: 02/2019
Editorial: Molecular Diversity Preservation International
Revista: Agronomy
ISSN: 2073-4395
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

BCS (Body Condition Score) is a method to estimate body fat reserves and accumulated energy balance of cows, placing estimations (or BCS values) in a scale of 1 to 5. Periodically rating BCS of dairy cows is very important since BCS values are associated with milk production, reproduction, and health of cows. However, in practice, obtaining BCS values is a time-consuming and subjective task performed visually by expert scorers. There have been several efforts to automate BCS of dairy cows by using image analysis and machine learning techniques. In a previous work, an automatic system to estimate BCS values was proposed, which is based on Convolutional Neural Networks (CNNs). In this paper we significantly extend the techniques exploited by that system via using transfer learning and ensemble modeling techniques to further improve BCS estimation accuracy. The improved system has achieved good estimations results in comparison with the base system. Overall accuracy of BCS estimations within 0.25 units of difference from true values has increased 4% (up to 82%), while overall accuracy within 0.50 units has increased 3% (up to 97%).
Palabras clave: BODY CONDITION SCORE , CONVOLUTIONAL NEURAL NETWORKS , IMAGE ANALYSIS , MODEL ENSEMBLING , PRECISION LIVESTOCK , TRANSFER LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.152Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/122863
URL: https://www.mdpi.com/2073-4395/9/2/90
DOI: http://dx.doi.org/10.3390/agronomy9020090
Colecciones
Articulos(CIVETAN)
Articulos de CENTRO DE INVESTIGACION VETERINARIA DE TANDIL
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Rodríguez Alvarez, Juan Maximiliano; Arroqui, Mauricio; Mangudo, Pablo; Toloza, Juan Manuel; Jatip, Daniel Esteban; et al.; Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning and model ensembling techniques; Molecular Diversity Preservation International; Agronomy; 9; 2; 2-2019; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES