Mostrar el registro sencillo del ítem

dc.contributor.author
Sanchez, Jorge Adrian  
dc.contributor.author
Perronnin, Florent  
dc.contributor.author
Mensink, Thomas  
dc.contributor.author
Verbeek, Jakob  
dc.date.available
2017-01-31T20:16:42Z  
dc.date.issued
2013-06  
dc.identifier.citation
Sanchez, Jorge Adrian; Perronnin, Florent ; Mensink, Thomas; Verbeek, Jakob; Image Classification with the Fisher Vector: Theory and Practice; Springer; International Journal Of Computer Vision; 105; 3; 6-2013; 222-245  
dc.identifier.issn
0920-5691  
dc.identifier.uri
http://hdl.handle.net/11336/12271  
dc.description.abstract
A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads to the popular Bag-of-Visual words representation. In this work, we propose to use the Fisher Kernel framework as an alternative patch encoding strategy: we describe patches by their deviation from an “universal” generative Gaussian mixture model. This representation, which we call Fisher vector has many advantages: it is efficient to compute, it leads to excellent results even with efficient linear classifiers, and it can be compressed with a minimal loss of accuracy using product quantization. We report experimental results on five standard datasets—PASCAL VOC 2007, Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K— with up to 9M images and 10K classes, showing that the FV framework is a state-of-the-art patch encoding technique.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Image Classification  
dc.subject
Large-Scale Classification  
dc.subject
Bag-Of-Visual Words  
dc.subject
Fisher Vector  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Image Classification with the Fisher Vector: Theory and Practice  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-11-25T14:00:50Z  
dc.journal.volume
105  
dc.journal.number
3  
dc.journal.pagination
222-245  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina  
dc.description.fil
Fil: Perronnin, Florent . Xerox Research Centre Europe; Francia  
dc.description.fil
Fil: Mensink, Thomas. University of Amsterdam. Inteligent Systems Lab Amsterdam; Países Bajos  
dc.description.fil
Fil: Verbeek, Jakob. LEAR Team, INRIA Grenoble; Francia  
dc.journal.title
International Journal Of Computer Vision  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11263-013-0636-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s11263-013-0636-x