Mostrar el registro sencillo del ítem
dc.contributor.author
Sanchez, Jorge Adrian

dc.contributor.author
Perronnin, Florent
dc.contributor.author
Mensink, Thomas
dc.contributor.author
Verbeek, Jakob
dc.date.available
2017-01-31T20:16:42Z
dc.date.issued
2013-06
dc.identifier.citation
Sanchez, Jorge Adrian; Perronnin, Florent ; Mensink, Thomas; Verbeek, Jakob; Image Classification with the Fisher Vector: Theory and Practice; Springer; International Journal Of Computer Vision; 105; 3; 6-2013; 222-245
dc.identifier.issn
0920-5691
dc.identifier.uri
http://hdl.handle.net/11336/12271
dc.description.abstract
A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads to the popular Bag-of-Visual words representation. In this work, we propose to use the Fisher Kernel framework as an alternative patch encoding strategy: we describe patches by their deviation from an “universal” generative Gaussian mixture model. This representation, which we call Fisher vector has many advantages: it is efficient to compute, it leads to excellent results even with efficient linear classifiers, and it can be compressed with a minimal loss of accuracy using product quantization. We report experimental results on five standard datasets—PASCAL VOC 2007, Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K— with up to 9M images and 10K classes, showing that the FV framework is a state-of-the-art patch encoding technique.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Image Classification
dc.subject
Large-Scale Classification
dc.subject
Bag-Of-Visual Words
dc.subject
Fisher Vector
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Image Classification with the Fisher Vector: Theory and Practice
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-11-25T14:00:50Z
dc.journal.volume
105
dc.journal.number
3
dc.journal.pagination
222-245
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Sanchez, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
dc.description.fil
Fil: Perronnin, Florent . Xerox Research Centre Europe; Francia
dc.description.fil
Fil: Mensink, Thomas. University of Amsterdam. Inteligent Systems Lab Amsterdam; Países Bajos
dc.description.fil
Fil: Verbeek, Jakob. LEAR Team, INRIA Grenoble; Francia
dc.journal.title
International Journal Of Computer Vision

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11263-013-0636-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s11263-013-0636-x
Archivos asociados