Artículo
Image Classification with the Fisher Vector: Theory and Practice
Fecha de publicación:
06/2013
Editorial:
Springer
Revista:
International Journal Of Computer Vision
ISSN:
0920-5691
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads to the popular Bag-of-Visual words representation. In this work, we propose to use the Fisher Kernel framework as an alternative patch encoding strategy: we describe patches by their deviation from an “universal” generative Gaussian mixture model. This representation, which we call Fisher vector has many advantages: it is efficient to compute, it leads to excellent results even with efficient linear classifiers, and it can be compressed with a minimal loss of accuracy using product quantization. We report experimental results on five standard datasets—PASCAL VOC 2007, Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K— with up to 9M images and 10K classes, showing that the FV framework is a state-of-the-art patch encoding technique.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Sanchez, Jorge Adrian; Perronnin, Florent ; Mensink, Thomas; Verbeek, Jakob; Image Classification with the Fisher Vector: Theory and Practice; Springer; International Journal Of Computer Vision; 105; 3; 6-2013; 222-245
Compartir