Artículo
Pairs of Projections: Geodesics, Fredholm and Compact Pairs
Fecha de publicación:
08/2014
Editorial:
Birkhauser Verlag Ag
Revista:
Complex Analysis And Operator Theory
ISSN:
1661-8254
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A pair (P,Q) of orthogonal projections in a Hilbert space H is called a Fredholm pair if QP:R(P)→R(Q)is a Fredholm operator. Let F be the set of all Fredholm pairs. A pair is called compact if P−Q is compact. Let C be the set of all compact pairs. Clearly C⊂F properly. In this paper it is shown that both sets are differentiable manifolds, whose connected components are parametrized by the Fredholm index. In the process, pairs P,Q that can be joined by a geodesic (or equivalently, a minimal geodesic) of the Grassmannian of H are characterized: this happens if and only if dim(R(P)∩N(Q))=dim(R(Q)∩N(P)).
Palabras clave:
Projection
,
Geodesic
,
Fredolm Operator
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Pairs of Projections: Geodesics, Fredholm and Compact Pairs; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 8; 7; 8-2014; 1435-1453
Compartir
Altmétricas