Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.date.available
2017-01-30T19:39:22Z  
dc.date.issued
2014-08  
dc.identifier.citation
Andruchow, Esteban; Pairs of Projections: Geodesics, Fredholm and Compact Pairs; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 8; 7; 8-2014; 1435-1453  
dc.identifier.issn
1661-8254  
dc.identifier.uri
http://hdl.handle.net/11336/12181  
dc.description.abstract
A pair (P,Q) of orthogonal projections in a Hilbert space H is called a Fredholm pair if QP:R(P)→R(Q)is a Fredholm operator. Let F be the set of all Fredholm pairs. A pair is called compact if P−Q is compact. Let C be the set of all compact pairs. Clearly C⊂F properly. In this paper it is shown that both sets are differentiable manifolds, whose connected components are parametrized by the Fredholm index. In the process, pairs P,Q that can be joined by a geodesic (or equivalently, a minimal geodesic) of the Grassmannian of H are characterized: this happens if and only if dim(R(P)∩N(Q))=dim(R(Q)∩N(P)).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Projection  
dc.subject
Geodesic  
dc.subject
Fredolm Operator  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Pairs of Projections: Geodesics, Fredholm and Compact Pairs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-21T18:28:41Z  
dc.journal.volume
8  
dc.journal.number
7  
dc.journal.pagination
1435-1453  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina  
dc.journal.title
Complex Analysis And Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s11785-013-0327-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11785-013-0327-1