Mostrar el registro sencillo del ítem
dc.contributor.author
Ramírez, Francisco Fernando
dc.contributor.author
Dundas, Daniel
dc.contributor.author
Sanchez, Cristian Gabriel
dc.contributor.author
Scherlis Perel, Damian Ariel
dc.contributor.author
Todorov, Tchavdar N.
dc.date.available
2021-01-06T17:17:51Z
dc.date.issued
2019-04
dc.identifier.citation
Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555
dc.identifier.issn
1932-7447
dc.identifier.uri
http://hdl.handle.net/11336/121635
dc.description.abstract
The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Tight-binding
dc.subject
Conductance
dc.subject
Electrode
dc.subject
Quantum dynamics
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-20T14:50:47Z
dc.identifier.eissn
1932-7455
dc.journal.volume
123
dc.journal.number
20
dc.journal.pagination
12542-12555
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington DC
dc.description.fil
Fil: Ramírez, Francisco Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.description.fil
Fil: Dundas, Daniel. The Queens University of Belfast; Irlanda
dc.description.fil
Fil: Sanchez, Cristian Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional; Argentina
dc.description.fil
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.description.fil
Fil: Todorov, Tchavdar N.. The Queens University of Belfast; Irlanda
dc.journal.title
Journal of Physical Chemistry C
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acs.jpcc.8b12319
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.04393
Archivos asociados