Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions

Ramírez, Francisco FernandoIcon ; Dundas, Daniel; Sanchez, Cristian GabrielIcon ; Scherlis Perel, Damian ArielIcon ; Todorov, Tchavdar N.
Fecha de publicación: 04/2019
Editorial: American Chemical Society
Revista: Journal of Physical Chemistry C
ISSN: 1932-7447
e-ISSN: 1932-7455
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

The so-called driven Liouville–von Neumann equation is a dynamical formulation to simulate a voltage bias across a molecular system and to model a time-dependent current in a grand-canonical framework. This approach introduces a damping term in the equation of motion that drives the charge to a reference, out of equilibrium density. Originally proposed by Horsfield and co-workers, further work on this scheme has led to different coexisting versions of this equation. On the other hand, the multiple-probe scheme devised by Todorov and collaborators, known as the hairy-probes method, is a formal treatment based on Green’s functions that allows the electrochemical potentials in two regions of an open quantum system to be fixed. In this article, the equations of motion of the hairy-probes formalism are rewritten to show that, under certain conditions, they can assume the same algebraic structure as the driven Liouville–von Neumann equation in the form proposed by Morzan et al. (J. Chem. Phys.2017, 146, 044110). In this way, a new formal ground is provided for the latter, identifying the origin of every term. The performances of the different methods are explored using tight-binding time-dependent simulations in three trial structures, designated as ballistic, disordered, and resonant models. In the context of first-principles Hamiltonians, the driven Liouville–von Neumann approach is of special interest, because it does not require the calculation of Green’s functions. Hence, the effects of replacing the reference density based on the Green’s function by one obtained from an applied field are investigated, to gain a deeper understanding of the limitations and the range of applicability of the driven Liouville–von Neumann equation.
Palabras clave: Tight-binding , Conductance , Electrode , Quantum dynamics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.548Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121635
DOI: https://doi.org/10.1021/acs.jpcc.8b12319
URL: https://pubs.acs.org/doi/10.1021/acs.jpcc.8b12319
URL: https://arxiv.org/abs/1905.04393
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Ramírez, Francisco Fernando; Dundas, Daniel; Sanchez, Cristian Gabriel; Scherlis Perel, Damian Ariel; Todorov, Tchavdar N.; Driven Liouville–von Neumann Equation for Quantum Transport and Multiple-Probe Green’s Functions; American Chemical Society; Journal of Physical Chemistry C; 123; 20; 4-2019; 12542-12555
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES