Mostrar el registro sencillo del ítem

dc.contributor.author
Ceretani, Andrea Noemí  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.contributor.author
Villa Saravia, Luis Tadeo  
dc.date.available
2020-12-29T15:21:48Z  
dc.date.issued
2015-12  
dc.identifier.citation
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo; Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source; Springer; Boundary Value Problems; 2015; 1; 12-2015; 1-26  
dc.identifier.issn
1687-2762  
dc.identifier.uri
http://hdl.handle.net/11336/121273  
dc.description.abstract
A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
EXPLICIT SOLUTIONS  
dc.subject
NON-CLASSICAL HEAT EQUATION  
dc.subject
NONLINEAR HEAT CONDUCTION PROBLEMS  
dc.subject
VOLTERRA INTEGRAL EQUATIONS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-12-10T13:30:49Z  
dc.identifier.eissn
1687-2770  
dc.journal.volume
2015  
dc.journal.number
1  
dc.journal.pagination
1-26  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Ceretani, Andrea Noemí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Villa Saravia, Luis Tadeo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina  
dc.journal.title
Boundary Value Problems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1186/s13661-015-0416-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-015-0416-3