Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source

Ceretani, Andrea NoemíIcon ; Tarzia, Domingo AlbertoIcon ; Villa Saravia, Luis TadeoIcon
Fecha de publicación: 12/2015
Editorial: Springer
Revista: Boundary Value Problems
ISSN: 1687-2762
e-ISSN: 1687-2770
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

A non-classical initial and boundary value problem for a non-homogeneous one-dimensional heat equation for a semi-infinite material with a zero temperature boundary condition is studied. It is not a standard heat conduction problem because a non-uniform heat source dependent on the heat flux at the boundary is considered. The purpose of this article is to find explicit solutions and analyze how to control their asymptotic temporal behavior through the source term. Explicit solutions independent of the space or temporal variables, solutions with separated variables and solutions by an integral representation depending on the heat flux at the boundary are given. The controlling effects of the source term are analyzed by comparing the asymptotic temporal behavior of solutions corresponding to the same problem with and without source term. Finally, a relationship between the problem considered here with another non-classical problem for the heat equation is established, and explicit solutions for this second problem are also obtained. In this article, we give explicit solutions and analyze how to control them through the source term for several non-classical heat equation problems. In addition, our results enable us to compute the asymptotic temporal behavior of the heat flux at the boundary for each explicit solution obtained. As a consequence of our study, several solved non-classical problems for the heat equation that can be used for testing new numerical methods are given.
Palabras clave: EXPLICIT SOLUTIONS , NON-CLASSICAL HEAT EQUATION , NONLINEAR HEAT CONDUCTION PROBLEMS , VOLTERRA INTEGRAL EQUATIONS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.799Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121273
DOI: https://doi.org/10.1186/s13661-015-0416-3
URL: https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-015-0416-
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(INIQUI)
Articulos de INST.DE INVEST.PARA LA INDUSTRIA QUIMICA (I)
Citación
Ceretani, Andrea Noemí; Tarzia, Domingo Alberto; Villa Saravia, Luis Tadeo; Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source; Springer; Boundary Value Problems; 2015; 1; 12-2015; 1-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES