Mostrar el registro sencillo del ítem

dc.contributor.author
Christoph Aistleitne  
dc.contributor.author
Becher, Veronica Andrea  
dc.contributor.author
Olivier Carton  
dc.date.available
2020-12-23T17:32:22Z  
dc.date.issued
2019-04  
dc.identifier.citation
Christoph Aistleitne; Becher, Veronica Andrea; Olivier Carton; Normal numbers with digit dependencies; American Mathematical Society; Transactions Of The American Mathematical Society; 113; 2; 4-2019; 169-178  
dc.identifier.issn
0002-9947  
dc.identifier.uri
http://hdl.handle.net/11336/121152  
dc.description.abstract
We give metric theorems for the property of Borel normality for real numbers under the assumption of digit dependencies in their expansion in a given integer base. We quantify precisely how much digit dependence can be allowed such that, still, almost all real numbers are normal. Our theorem states that almost all real numbers are normal when at least slightly more than $log log n$ consecutive digits with indices starting at position $n$ are independent. As the main application, we consider the Toeplitz set $T_P$, which is the set of all sequences $a_1a_2 ldots $ of symbols from ${0, ldots, b-1}$ such that $a_n$ is equal to $a_{pn}$, for every $p$ in $P$ and $n=1,2,ldots$. Here~$b$ is an integer base and~$P$ is a finite set of prime numbers. We show that almost every real number whose base $b$ expansion is in~$T_P$ is normal to base~$b$. In the case when $P$ is the singleton set ${2}$ we prove that more is true: almost every real number whose base $b$ expansion is in $T_P$ is normal to all integer bases. We also consider the Toeplitz transform which maps the set of all sequences to the set $T_P$ and we characterize the normal sequences whose Toeplitz transform is normal as well.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DISTRIBUTION MODULO ONE  
dc.subject
NORMAL NUMBERS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Normal numbers with digit dependencies  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T17:32:14Z  
dc.journal.volume
113  
dc.journal.number
2  
dc.journal.pagination
169-178  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Christoph Aistleitne. Technical University Graz; Austria  
dc.description.fil
Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Olivier Carton. Université Paris Diderot; Francia  
dc.journal.title
Transactions Of The American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/tran/7706  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2019-372-06/S0002-9947-2018-07706-6/