Artículo
Normal numbers with digit dependencies
Fecha de publicación:
04/2019
Editorial:
American Mathematical Society
Revista:
Transactions Of The American Mathematical Society
ISSN:
0002-9947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give metric theorems for the property of Borel normality for real numbers under the assumption of digit dependencies in their expansion in a given integer base. We quantify precisely how much digit dependence can be allowed such that, still, almost all real numbers are normal. Our theorem states that almost all real numbers are normal when at least slightly more than $log log n$ consecutive digits with indices starting at position $n$ are independent. As the main application, we consider the Toeplitz set $T_P$, which is the set of all sequences $a_1a_2 ldots $ of symbols from ${0, ldots, b-1}$ such that $a_n$ is equal to $a_{pn}$, for every $p$ in $P$ and $n=1,2,ldots$. Here~$b$ is an integer base and~$P$ is a finite set of prime numbers. We show that almost every real number whose base $b$ expansion is in~$T_P$ is normal to base~$b$. In the case when $P$ is the singleton set ${2}$ we prove that more is true: almost every real number whose base $b$ expansion is in $T_P$ is normal to all integer bases. We also consider the Toeplitz transform which maps the set of all sequences to the set $T_P$ and we characterize the normal sequences whose Toeplitz transform is normal as well.
Palabras clave:
DISTRIBUTION MODULO ONE
,
NORMAL NUMBERS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Christoph Aistleitne; Becher, Veronica Andrea; Olivier Carton; Normal numbers with digit dependencies; American Mathematical Society; Transactions Of The American Mathematical Society; 113; 2; 4-2019; 169-178
Compartir
Altmétricas