Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Do concern mining tools really help requirements analysts? An empirical study of the vetting process

Rago, Alejandro MiguelIcon ; Diaz Pace, Jorge AndresIcon ; Marcos, Claudia Andrea
Fecha de publicación: 10/2019
Editorial: Elsevier Science Inc
Revista: Journal Of Systems And Software
ISSN: 0164-1212
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Software requirements are often described in natural language because they are useful to communicate and validate. Due to their focus on particular facets of a system, this kind of specifications tends to keep relevant concerns (also known as early aspects) from the analysts’ view. These concerns are known as crosscutting concerns because they appear scattered among documents. Concern mining tools can help analysts to uncover concerns latent in the text and bring them to their attention. Nonetheless, analysts are responsible for vetting tool-generated solutions, because the detection of concerns is currently far from perfect. In this article, we empirically investigate the role of analysts in the concern vetting process, which has been little studied in the literature. In particular, we report on the behavior and performance of 55 subjects in three case-studies working with solutions produced by two different tools, assessed in terms of binary classification measures. We discovered that analysts can improve “bad” solutions to a great extent, but performed significantly better with “good” solutions. We also noticed that the vetting time is not a decisive factor to their final accuracy. Finally, we observed that subjects working with solutions substantially different from those of existing tools (better recall) can also achieve a good performance.
Palabras clave: CROSSCUTTING CONCERN , EMPIRICAL STUDY , HUMAN BEHAVIOR , REQUIREMENTS ENGINEERING , TOOL SUPPORT , USE CASE SPECIFICATIONS
Ver el registro completo
 
Archivos asociados
Tamaño: 4.703Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121007
DOI: https://doi.org/10.1016/j.jss.2019.06.073
URL: https://www.sciencedirect.com/science/article/abs/pii/S0164121219301359
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Rago, Alejandro Miguel; Diaz Pace, Jorge Andres; Marcos, Claudia Andrea; Do concern mining tools really help requirements analysts? An empirical study of the vetting process; Elsevier Science Inc; Journal Of Systems And Software; 156; 10-2019; 181-203
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES