Mostrar el registro sencillo del ítem
dc.contributor.author
Longo, Mathias
dc.contributor.author
Hirsch Jofré, Matías Eberardo
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.contributor.author
Zunino Suarez, Alejandro Octavio
dc.date.available
2020-12-22T12:32:30Z
dc.date.issued
2019-02
dc.identifier.citation
Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-17
dc.identifier.uri
http://hdl.handle.net/11336/121003
dc.description.abstract
With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI AG
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BATTERY PREDICTION
dc.subject
DEW COMPUTING
dc.subject
FEATURE SELECTION
dc.subject
MACHINE LEARNING
dc.subject
MOBILE CLOUD COMPUTING
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2020-11-18T21:21:18Z
dc.identifier.eissn
2078-2489
dc.journal.volume
10
dc.journal.number
3
dc.journal.pagination
1-17
dc.journal.pais
Suiza
dc.description.fil
Fil: Longo, Mathias. University of Southern California; Estados Unidos
dc.description.fil
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Information
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/10/3/86
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/info10030086
Archivos asociados