Mostrar el registro sencillo del ítem

dc.contributor.author
Longo, Mathias  
dc.contributor.author
Hirsch Jofré, Matías Eberardo  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.date.available
2020-12-22T12:32:30Z  
dc.date.issued
2019-02  
dc.identifier.citation
Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-17  
dc.identifier.uri
http://hdl.handle.net/11336/121003  
dc.description.abstract
With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI AG  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BATTERY PREDICTION  
dc.subject
DEW COMPUTING  
dc.subject
FEATURE SELECTION  
dc.subject
MACHINE LEARNING  
dc.subject
MOBILE CLOUD COMPUTING  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2020-11-18T21:21:18Z  
dc.identifier.eissn
2078-2489  
dc.journal.volume
10  
dc.journal.number
3  
dc.journal.pagination
1-17  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Longo, Mathias. University of Southern California; Estados Unidos  
dc.description.fil
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Information  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/10/3/86  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/info10030086