Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability

Longo, MathiasIcon ; Hirsch Jofré, Matías EberardoIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Zunino Suarez, Alejandro OctavioIcon
Fecha de publicación: 02/2019
Editorial: MDPI AG
Revista: Information
e-ISSN: 2078-2489
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

With self-provisioning of resources as premise, dew computing aims at providing computing services by minimizing the dependency over existing internetwork back-haul. Mobile devices have a huge potential to contribute to this emerging paradigm, not only due to their proximity to the end user, ever growing computing/storage features and pervasiveness, but also due to their capability to render services for several hours, even days,without being plugged to the electricity grid. Nonetheless,misusing the energy of their batteries can discourage owners to offer devices as resource providers in dew computing environments. Arguably, having accurate estimations of remaining battery would help to take better advantage of a device's computing capabilities. In this paper, we propose a model to estimate mobile devices battery availability by inspecting traces of real mobile device owner's activity and relevant device state variables. Themodel includes a feature extraction approach to obtain representative features/variables, and a prediction approach, based on regression models and machine learning classifiers. On average, the accuracy of our approach, measured with the mean squared error metric, overpasses the one obtained by a relatedwork. Prediction experiments at five hours ahead are performed over activity logs of 23 mobile users across several months.
Palabras clave: BATTERY PREDICTION , DEW COMPUTING , FEATURE SELECTION , MACHINE LEARNING , MOBILE CLOUD COMPUTING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.052Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/121003
URL: https://www.mdpi.com/2078-2489/10/3/86
DOI: https://doi.org/10.3390/info10030086
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Longo, Mathias; Hirsch Jofré, Matías Eberardo; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Towards integrating mobile devices into dew computing: A model for hour-wise prediction of energy availability; MDPI AG; Information; 10; 3; 2-2019; 1-17
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES